4£®Èçͼ£¬¹ýËıßÐÎABCDµÄËĸö¶¥µã·Ö±ð×÷¶Ô½ÇÏßAC¡¢BDµÄƽÐÐÏߣ¬µÃµ½ËıßÐÎEFGH£®
£¨1£©µ±ËıßÐÎABCDΪµÈÑüÌÝÐÎʱ£¬ÇëÅжÏËıßÐÎEFGHµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÈôËıßÐÎABCDµÄÃæ»ýΪ6£¬ÔòËıßÐÎEFGHµÄÃæ»ýΪ12£®ÈôËıßÐÎEFGHµÄÃæ»ýΪ6£¬ÔòËıßÐÎABCDµÄÃæ»ýΪ3£®
£¨3£©Çëд³öËıßÐÎEFGHµÄÃæ»ýÓëËıßÐÎABCDµÄÃæ»ýÖ®¼äµÄ¹ØÏµÊ½ÎªSËıßÐÎEFGH=2SËıßÐÎABCD£®

·ÖÎö £¨1£©Ê×ÏÈÖ¤Ã÷ËıßÐÎEFGHÊÇÆ½ÐÐËıßÐΣ¬È»ºó¸ù¾ÝµÈÑüÌÝÐεĶԽÇÏßÏàµÈ£¬¼´¿ÉÖ¤Ã÷ƽÐÐËıßÐÎEFGHµÄÁÚ±ßÏàµÈ£¬¼´¿ÉÖ¤µÃ£»
£¨2£©¸ù¾ÝƽÐÐËıßÐÎÒÔ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉÖ¤µÃ£»
£¨3£©¸ù¾Ý£¨2£©µÄ¹ý³Ì¼´¿ÉÇó½â£®

½â´ð ½â£º£¨1£©ËıßÐÎEFGHµÄÐÎ״ΪÁâÐΣ»
ÀíÓÉÊÇ£º¡ßHG¡ÎAC¡ÎEF£¬EH¡ÎBD¡ÎGF£¬
¡àËıßÐÎEFGHÊÇÆ½ÐÐËıßÐΣ¬ËıßÐÎAHGCÊÇÆ½ÐÐËıßÐΣ¬
¡àAC=GH£¬
ͬÀí£¬EH=BD£¬
ÓÖ¡ßµÈÑüÌÝÐÎABCDÖУ¬AC=BD£¬
¡àEH=HG£¬
¡àƽÐÐËıßÐÎEFGHÊÇÁâÐΣ»
£¨2£©¡ßËıßÐÎAHGCÊÇÆ½ÐÐËıßÐΣ¬
¡àS¡÷ACD=$\frac{1}{2}$SƽÐÐËıßÐÎAHGC£¬
ͬÀí£¬S¡÷ABC=$\frac{1}{2}$SƽÐÐËıßÐÎAEFC£¬
¡àSËıßÐÎEFGH=2SËıßÐÎABCD=12£»
ͬÀí£¬µ±ËıßÐÎEFGHµÄÃæ»ýΪ6£¬ÔòËıßÐÎABCDµÄÃæ»ýΪ3£®
¹Ê´ð°¸ÊÇ£º12£¬3£»
£¨3£©SËıßÐÎEFGH=2SËıßÐÎABCD£®

µãÆÀ ±¾Ì⿼²éÁËÁâÐεÄÅж¨ÓëµÈÑüÌÝÐεÄÐÔÖÊ£¬¸ù¾ÝƽÐÐËıßÐκÍÈý½ÇÐεÄÃæ»ý¹«Ê½Ö¤Ã÷SËıßÐÎEFGH=2SËıßÐÎABCDÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®¼ÆË㣺
£¨1£©$\sqrt{48}$-18$\sqrt{\frac{1}{27}}$-3$\sqrt{\frac{1}{3}}$
£¨2£©£¨3+2$\sqrt{5}$£©2-£¨4+$\sqrt{5}$£©£¨4-$\sqrt{5}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èô¡÷ABCµÄÈý±ß³¤a£¬b£¬cÂú×ãa2-bc=c2-ab£¬Ôò¡÷ABCÊǵÈÑüÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÓÐÀíÊýa£¬b£¬cÂú×ã|a2-1|+£¨b+3£©2=-£¨3c-1£©2n£¨nΪÕýÕûÊý£©£¬Ôòa-bcµÄֵΪ¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Òòʽ·Ö½â£º£¨x-1£©£¨x+2£©£¨x-3£©£¨x+4£©+24£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔĶÁÏÂÃæµÄ²ÄÁÏ£º
ÔÚÆ½Ã漸ºÎÖУ¬ÎÒÃÇѧ¹ýÁ½ÌõÖ±Ï߯½Ðе͍Ò壮ÏÂÃæ¾ÍÁ½¸öÒ»´Îº¯ÊýµÄͼÏóËùÈ·¶¨µÄÁ½ÌõÖ±Ïߣ¬¸ø³öËüÃÇÆ½Ðе͍Ò壺ÉèÒ»´Îº¯Êýy=k1x+b1£¨k1¡Ù0£©µÄͼÏóΪֱÏßl1£¬Ò»´Îº¯Êýy=k2x+b2£¨k2¡Ù0£©µÄͼÏóΪֱÏßl2£¬Èôk1=k2£¬ÇÒb1¡Ùb2£¬ÎÒÃǾͳÆÖ±Ïßl1ÓëÖ±Ïßl2»¥ÏàÆ½ÐУ®
½â´ðÏÂÃæµÄÎÊÌ⣺
£¨1£©ÒÑÖªÒ»´Îº¯Êýy=-2xµÄͼÏóΪֱÏßl1£¬Çó¹ýµãP£¨1£¬4£©ÇÒÓëÒÑÖªÖ±Ïßl1ƽÐеÄÖ±Ïßl2µÄº¯Êý±í´ïʽ£¬²¢ÔÚ×ø±êϵÖл­³öÖ±Ïßl1ºÍl2µÄͼÏó£»
£¨2£©ÉèÖ±Ïßl2·Ö±ðÓëyÖá¡¢xÖá½»ÓÚµãA¡¢B£¬¹ý×ø±êÔ­µãO×÷OC¡ÍAB£¬´¹×ãΪC£¬Çól1ºÍl2Á½Æ½ÐÐÏßÖ®¼äµÄ¾àÀëOCµÄ³¤£»
£¨3£©ÈôQΪOAÉÏÒ»¶¯µã£¬ÇóQP+QBµÄ×îСֵ£¬²¢ÇóÈ¡µÃ×îСֵʱQµãµÄ×ø±ê£®
£¨4£©ÔÚxÖáÉÏÕÒÒ»µãM£¬Ê¹¡÷BMPΪµÈÑüÈý½ÇÐΣ¬ÇóMµÄ×ø±ê£®£¨Ö±½Óд³ö´ð°¸£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬AB=BC=6£¬¡ÏABC=90¡ã£®µãPÊÇ¡÷ABCÍâ½Ç¡ÏBCNµÄ½Çƽ·ÖÏßÉÏÒ»¸ö¶¯µã£¬µãP¡äÊǵãP¹ØÓÚÖ±ÏßBCµÄ¶Ô³Æµã£¬Á¬½áPP¡ä½»BCÓÚµãM¡¢BP¡ä½»ACÓÚµãD£¬Á¬½áBP¡¢AP¡ä¡¢CP¡ä£®

£¨1£©ÈôËıßÐÎBPCP¡äΪÁâÐΣ¬ÇóBMµÄ³¤£»  
£¨2£©Èô¡÷BMP¡ä¡×¡÷ABC£¬ÇóBMµÄ³¤£»
£¨3£©Èô¡÷ABDΪµÈÑüÈý½ÇÐΣ¬Çó¡÷ABDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®·Öʽ$\frac{x+4}{x+1}$µÄÖµÊÇÕûÊý£¬ÇóÕýÕûÊýxµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁÐʽ×ÓÖУ¬±íʾyÊÇxµÄÕý±ÈÀýº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=$\frac{2}{x}$B£®y=x+2C£®y=x2D£®y=2x

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸