精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线(a0)的对称轴为直线,且抛物线经过A(10)C(03)两点,与轴交于点B

1)若直线经过BC两点,求直线BC和抛物线的解析式;

2)在抛物线的对称轴上找一点M,使MA+MC的值最小,求点M的坐标;

3)设P为抛物线的对称轴上的一个动点,求使ΔBPC为直角三角形的点P的坐标.

【答案】1y=x+3;(2M(12);(3P的坐标为(-1-2)(-14)(-1)(-1)

【解析】

1)先把点AC的坐标分别代入抛物线解析式得到abc的关系式,再根据抛物线的对称轴方程可得ab的关系,再联立得到方程组,解方程组,求出abc的值即可得到抛物线解析式;把BC两点的坐标代入直线y=mx+n,解方程组求出mn的值即可得到直线解析式;
2)设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小.把x=-1代入直线y=x+3y的值,即可求出点M坐标;
3)设P-1t),又因为B-30),C03),所以可得BC2=18PB2=-1+32+t2=4+t2PC2=-12+t-32=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.

解:(1)由题意得:

解得:抛物线的解析式为:

由题意得B(-30)

B(-30)C(03)代入得:

解得:直线的解析式为

2)设直线BC与对称轴x=1的交点为M,则此时MA+MC的值最小.

代入直线M(12)

即当点M到点A的距离与到点C的距离之和最小时M的坐标为(12)

3)设P(-1t)B(-30)C(03)

若点B为直角顶点时,则

即:

解得:

若点C为直角顶点时,则

即:

解得:

P为直角顶点时,则

即:

解得:

综上所述:P的坐标为(-1-2)(-14)(-1)(-1)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题:如图(1),点EF分别在正方形ABCD的边BCCD上,∠EAF=45°试判断BEEFFD之间的数量关系.

【发现证明】小聪把ABE绕点A逆时针旋转90°ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

【类比引申】如图(2),四边形ABCD中,∠BAD≠90°AB=ADB+D=180°,点EF分别在边BCCD上,则当∠EAF与∠BAD满足  关系时,仍有EF=BE+FD请证明你的结论.

【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°ADC=120°BAD=150°,道路BCCD上分别有景点EF,且AEADDF=401米,现要在EF之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41 =1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).

请根据图中信息解答下列问题:

1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)

2)求扇形统计图中表示满意的扇形的圆心角度数;

3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是非常满意满意的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,△ABC的顶点AC分別是直线y=x+4与坐标轴的交点,点B的坐标为(﹣20),点D是边AC上的一点,DEBC于点E,点F在边AB上,且DF两点关于y轴上的某点成中心对称,连结DFEF.设点D的横坐标为mEF2l,请探究:

①线段EF长度是否有最小值.

②△BEF能否成为直角三角形.

小明尝试用观察﹣猜想﹣验证﹣应用的方法进行探究,请你一起来解决问题.

1)小明利用几何画板软件进行观察,测量,得到lm变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想lm可能满足的函数类别.

2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.

3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】钟南山院士谈到防护新型冠状病毒肺炎时说:我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从有400人的某小区抽取40名人员的答卷成绩,并对他们的成绩(单位:分)统计如下:

85 80 95 100 90 95 85 65 75 85

90 90 70 90 100 80 80 90 95 75

80 60 80 95 85 100 90 85 85 80

95 75 80 90 70 80 95 75 100 90

根据数据绘制了如下的表格和统计图:

根据上面提供的信息,回答下列问题:

1)统计表中的a   b   c= ,d=

2)请补全条形统计图;

3)根据抽样调查结果,请估计该小区答题成绩为C的有多少人?

4)该社区有2名男管理员和2名女管理员,现从中随机挑选2名管理员参加社区防控宣传活动,请用树状图法或列表法求出恰好选中“11的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解本校九年级学生期末数学考试情况,在九年级随机抽取了一部分学生的期末数学成绩为样本,分为分)、分)、分)、分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:

1)这次随机抽取的学生共有多少人?

2)请补全条形统计图.

3)这个学校九年级共有学生人,若分数为分(含分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生大约有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线ly=x,过点A(01)y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;……按此作法继续下去,则点A2020的坐标为______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)问题探究:如图1所示,有公共顶点A的两个正方形ABCD和正方形AEFGAEAB,连接BEDG,请判断线段BE与线段DG之间有怎样的数量关系和位置关系.并请说明理由.

2)理解应用:如图2所示,有公共顶点A的两个正方形ABCD和正方形AEFGAEABAB10,将正方形AEFG绕点A在平面内任意旋转,当∠ABE15°,且点DEG三点在同一条直线上时,请直接写出AE的长   

3)拓展应用:如图3所示,有公共顶点A的两个矩形ABCD和矩形AEFGAD4AB4AG4AE4,将矩形AEFG绕点A在平面内任意旋转,连接BDDE,点MN分别是BDDE的中点,连接MN,当点DEG三点在同一条直线上时,请直接写出MN的长   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于点,与轴的交点在点与点之间(不包括这两点),对称轴为直线.有下列结论:

;②;③;④若点在抛物线上,则.其中正确结论的个数是()

A.B.C.D.

查看答案和解析>>

同步练习册答案