【题目】为了解本校九年级学生期末数学考试情况,在九年级随机抽取了一部分学生的期末数学成绩为样本,分为(
分)、
(
分)、
(
分)、
(
分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:
(1)这次随机抽取的学生共有多少人?
(2)请补全条形统计图.
(3)这个学校九年级共有学生人,若分数为
分(含
分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生大约有多少?
科目:初中数学 来源: 题型:
【题目】如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为
A. 4 B. C. 6 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是( )
A.当n﹣m=1时,b﹣a有最小值
B.当n﹣m=1时,b﹣a有最大值
C.当b﹣a=1时,n﹣m无最小值
D.当b﹣a=1时,n﹣m有最大值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是( )
A. BD⊥AC B. AC2=2ABAE C. △ADE是等腰三角形 D. BC=2AD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线(a≠0)的对称轴为直线
,且抛物线经过A(1,0),C(0,3)两点,与
轴交于点B.
(1)若直线经过B,C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴上找一点M,使MA+MC的值最小,求点M的坐标;
(3)设P为抛物线的对称轴上的一个动点,求使ΔBPC为直角三角形的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)如图①,若点D是抛物线上一动点,设点D的横坐标为m(0<m<3),连接CD,BD,BC,AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;
(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(8,1),B(0,3),反比例函数(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.
(1)求k的值;
(2)求△BMN面积的最大值;
(3)若MA⊥AB,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】无锡市灵山胜境公司厂生产一种新的大佛纪念品,每件纪念品制造成本为18元,试销过程发现,每月销量万件
与销售单价
元
之间的关系可以近似地看作一次函数
.
写出公司每月的利润
万元
与销售单价
元
之间函数解析式;
当销售单价为多少元时,公司每月能够获得最大利润?最大利润是多少?
根据工商部门规定,这种纪念品的销售单价不得高于32元
如果公司要获得每月不低于350万元的利润,那么制造这种纪念品每月的最低制造成本需要多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点,点
.将
绕点
顺时针旋转,得
,点
,
旋转后的对应点为
,
.记旋转角为
.
(1)如图①,当时,求点
的坐标;
(2)如图②,当时,求点
的坐标;
(3)连接,设线段
的中点为
,连接
,求线段
的长的最小值(直接写出结果即可).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com