精英家教网 > 初中数学 > 题目详情

【题目】在四张背面完全相同的纸牌ABCD中,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张(不放回),再从余下的3张纸牌中摸出一张.

(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用ABCD表示);

(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.

【答案】(1)共有12种等可能的结果;(2).

【解析】

(1)根据题意画出树状图,由树状图即可求得所有等可能的结果;(2)由树状图可求得摸出两张牌面图形既是轴对称图形又是中心对称图形的情况,再利用概率公式即可求得答案.

解:(1)画树状图得:

则共有12种等可能的结果;

(2)∵既是轴对称图形又是中心对称图形的只有BC

∴既是轴对称图形又是中心对称图形的有2种情况,

∴既是轴对称图形又是中心对称图形的概率为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,RtABC的三个顶点分别是A(-4,2)、B(0,4)、C(0,2),

(1)画出ABC关于点C成中心对称的A1B1C;平移ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的A2B2C2

(2)A1B1C和A2B2C2关于某一点成中心对称,则对称中心的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.

(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE的长;

(2)如图2,连接BE,EC,过点E作EFEC交AB于点F,连接CF,与BE交于点G.当BE平分ABC时,求BG的长;

(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′NAD于点N,与EH交于点M,且AE=1.

的值;

连接BE,D'MH与CBE是否相似?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)

(1)若顾客选择方式一,则享受9折优惠的概率为多少

(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形中,交于延长线上的一点,且,连结分别交于点,连结则下列结论:①;②与全等的三角形共有个;③;④由点构成的四边形是菱形.其中正确的是(

A.①④B.①③④C.①②③D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.

1)要使每天获得利润700元,请你帮忙确定售价;

2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CEx轴于点E,tanABO=OB=4OE=2

(1)分别求出该反比例函数和直线AB的解析式;

(2)求出交点D坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两组卡片共5张,A组的三张分别写有数字246B组的两张分别写有35.它们除了数字外没有任何区别

1随机从A组抽取一张,求抽到数字为2的概率;

2随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠B=∠C90°,ABCDADAB+CD

1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);

2)在(1)的条件下,证明:AEDE

CD2AB4,点MN分别是AEAB上的动点,求BM+MN的最小值.

查看答案和解析>>

同步练习册答案