【题目】为了提高科技创新意识,我市某中学在“2018年科技节”活动中举行科技比赛,包括“航模”、“机器人”、“环保”、“建模”四个类别(每个学生只能参加一个类别的比赛),根据各类别参赛人数制成不完全的条形统计图和扇形统计图如下:
请根据以上图品信息,解答下列问题:
(1)全体参赛的学生共有_______人,扇形统计图中“建模”所在扇形的圆心角是_______°;
(2)将条形统计图补充完整;
(3)在比赛结果中,获得“环保”类一等奖的学生为1名男生和2名女生,获得“建模”类一等奖的学生为1名男生和1名女生.现从这两类获得一等奖的学生中各随机选取1名学生参加市级“环保建模”考察活动.则选取的两人中恰为1名男生1名女生的概率是______.
【答案】 60 72
【解析】分析:(1)由“航模”人数及其所占百分比可得总人数,用“建模”所占百分比乘以360°可得其对应圆心角度数;
(2)用总人数乘以“环保”类百分比可得其人数,用总人数减去其它三个类型的人数可得“建模”人数,即可补全条形图;
(3)根据题意画出树状图,然后由树状图求得所有等可能的结果与选取的两人中恰为1男生1女生的情况,再利用概率公式即可求得答案.
详解:(1)全体参赛的学生有:15÷25%=60(人),“建模”在扇形统计图中的圆心角是(1﹣25%﹣30%﹣25%)×360°=72°;
故答案为:(1)60,72.
(2)“环保”类人数为:60×25%=15(人),“建模”类人数为:60﹣15﹣18﹣15=12(人),补全条形图如图:
(3)画树状图如图:
∵共有6种等可能结果,其中两人中恰为1男生1女生的有3种结果,∴选取的两人中恰为1男生1女生的概率是: =.
科目:初中数学 来源: 题型:
【题目】数学课上,小明和小颖对一道应用题进行了合作探究:一列火车匀速行驶,经过一条长为1000米的隧道需要50秒,整列火车完全在隧道里的时间是30秒,求火车的长度.
(1)请补全小明的探究过程:设火车的长度为x米,则从车头进入隧道到车尾离开隧道所走的路程为(1000+x)米,所以这段时间内火车的平均速度为米/秒;由题意,火车的平均速度还可以表示为 米/秒.再根据火车的平均速度不变,可列方程 ,解方程后可得火车的长度为 米.
(2)小颖认为:也可以通过设火车的平均速度为v米/秒,列出方程解决问题.请按小颖的思路完成探究过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=3,BC=4,求四边形OCED的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是100千米,请根据图象回答或解决下面的问题.
(1)谁出发的较早?早多长时间?谁到达乙地早?早到多长时间?
(2)两人在途中行驶的速度分别是多少?
(3)指出在什么时间段内两车均行驶在途中;在这段时间内,
①自行车行驶在摩托车前面;
②自行车与摩托车相遇;
③自行车行驶在摩托车后面?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例的图象相交于A(-2,1),B(,-2)两点.
(1)求反比例函数和一次函数的解析式;
(2) 求△ABO的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是( )
A. ①②③④ B. ①②③ C. ①④ D. ②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E、F分别是矩形ABCD的边AB、BC的中点,连AF,CE,AF、CE交于G,则四边形BEGF与四边形ADCG的面积的比值为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若将一幅三角板按如图所示的方式放置,则下列结论中不正确的是( )
A. ∠1=∠3 B. 如果∠2=30°,则有AC∥DE
C. 如果∠2=30°,则有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com