【题目】如图,E、F分别是矩形ABCD的边AB、BC的中点,连AF,CE,AF、CE交于G,则四边形BEGF与四边形ADCG的面积的比值为___________.
科目:初中数学 来源: 题型:
【题目】为了提高科技创新意识,我市某中学在“2018年科技节”活动中举行科技比赛,包括“航模”、“机器人”、“环保”、“建模”四个类别(每个学生只能参加一个类别的比赛),根据各类别参赛人数制成不完全的条形统计图和扇形统计图如下:
请根据以上图品信息,解答下列问题:
(1)全体参赛的学生共有_______人,扇形统计图中“建模”所在扇形的圆心角是_______°;
(2)将条形统计图补充完整;
(3)在比赛结果中,获得“环保”类一等奖的学生为1名男生和2名女生,获得“建模”类一等奖的学生为1名男生和1名女生.现从这两类获得一等奖的学生中各随机选取1名学生参加市级“环保建模”考察活动.则选取的两人中恰为1名男生1名女生的概率是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)1﹣12+4
(2)﹣7﹣(﹣5)2÷(﹣1)2
(3)
(4)
(5)(用科学记数法表示)8.56×102﹣2.1×103
(6)用简便方法计算:﹣99×48
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某检修小组从地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
(1)在第__________次记录时距地最远;
(2)求收工时距地多远?
(3)若每千米耗油升,每升汽油需元,问检修小组工作一天需汽油费多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线AM,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)求点A的坐标;
(3)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上确定一点P,使PA+PB最小.求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点P为四边形ABCD所在平面上的点,如果∠PAD=∠PBC,则称点P为四边形ABCD关于A、B的等角点,以点C为坐标原点,BC所在直线为轴建立平面直角坐标系,点B的横坐标为﹣6.
(1)如图2,若A、D两点的坐标分别为A(﹣6,4)、D(0,4),点P在DC边上,且点P为四边形ABCD关于A、B的等角点,则点P的坐标为 _________ ;
(2)如图3,若A、D两点的坐标分别为A(﹣2,4)、D(0,4).
①若P在DC边上时,则四边形ABCD关于A、B的等角点P的坐标为 _________ ;
②在①的条件下,将PB沿轴向右平移个单位长度(0<<6)得到线段P′B′,连接P′D,B′D,试用含的式子表示P′D2+B′D2,并求出使P′D2+B′D2取得最小值时点P′的坐标;
③如图4,若点P为四边形ABCD关于A、B的等角点,且点P坐标为(1, ),求的值;
④以四边形ABCD的一边为边画四边形,所画的四边形与四边形ABCD有公共部分,若在所画的四边形内存在一点P,使点P分别是各相邻两顶点的等角点,且四对等角都相等,请直接写出所有满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016四川省达州市)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上,点O为原点,点A对应的数为9,点B对应的数为b,点C在点B右侧,长度为2个单位的线段BC在数轴上移动.
(1)当b=5时,试求线段AC的长;
(2)当线段BC在数轴上沿射线AO方向移动的过程中,若存在AC﹣OB=AB,求此时满足条件的b值.
(3)当线段BC在数轴上移动时,满足关系式|AC﹣OB|=|AB﹣OC|,则此时的b的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com