【题目】如图,直线y=kx+8(k<0)交y轴于点A,交x轴于点B.将△AOB关于直线AB翻折得到△APB.过点A作AC∥x轴交线段BP于点C,在AC上取点D,且点D在点C的右侧,连结BD.
(1)求证:AC=BC
(2)若AC=10.
①求直线AB的表达式.
②若△BCD是以BC为腰的等腰三角形,求AD的长.
(3)若BD平分∠OBP的外角,记△APC面积为S1,△BCD面积为S2,且=,则的值为______(直接写出答案)
【答案】(1)证明见解析;(2)①y=-x+8;②20或22;(3).
【解析】
(1)由平行线的性质可得出∠BAC=∠ABO,由折叠的性质可知∠ABO=∠ABC,进而可得出∠BAC=∠ABC,由等角对等边即可证出AC=BC;
(2)过点B作BE⊥CD于点E.①利用一次函数图象上点的坐标特征可求出OA的长度,进而可得出BE的长度,在Rt△BCE中,利用勾股定理可求出CE的长度,进而可得出OB,AE的长度,由OB的长度可得出点B的坐标,再利用待定系数法即可求出直线AB的表达式;
②分BC=DC及BC=BD两种情况考虑:当BC=DC时,由AC=BC=10,可求出AD的长度;当BC=BD时,利用等腰三角形的性质结合①的结论可求出CD的长度,进而可得出AD的长度.综上,此问得解;
(3)由折叠的性质结合三角形的面积公式可得出,设PC=2a,则CD=3a,易证△APC≌△BEC(AAS),由全等三角形的性质可得出CE=CP=2a,由角平分线的定义、平行线的性质结合等腰三角形的性质可得出CB=CD=AC=3a,在Rt△BCE中,CE=2a,进而可得出OB=5a,AD=6a,二者相比后即可得出的值.
(1)证明:∵AC∥x轴,
∴∠BAC=∠ABO.
由折叠的性质,可知:∠ABO=∠ABC,
∴∠BAC=∠ABC,
∴AC=BC.
(2)解:过点B作BE⊥CD于点E,如图1所示.
①当x=0时,y=kx+8=8,
∴点A的坐标为(0,8),BE=OA=8.
在Rt△BCE中,BC=AC=10,BE=8,
∴CE==6,
∴OB=AE=AC+CE=16,
∴点B的坐标为(16,0).
将点B(16,0)代入y=kx+8,得:0=16k+8,
解得:k=-,
∴直线AB的表达式为y=-x+8.
②当BC=DC时,AD=AC+CD=10+10=20;
当BC=BD时,由①可知:CD=2CE=12,
∴AD=AC+CD=10+12=22.
综上:AD的长为20或22.
(3)由折叠的性质,可知:AO=AP,∠APC=∠AOB=90°.
∵S△APC=APPC=AOPC,S△BCD=CDAO,OA=BE,
∴=,
设PC=2a,则CD=3a.
在△APC和△BEC中,
,
∴△APC≌△BEC(AAS),
∴PC=EC.
∵BD平分∠OBP的外角,CD∥x轴,
∴∠CBD=∠CDB,
∴CD=CB=3a.
在Rt△BCE中,CB=3a,CE=2a,
∴BE==a,
∴OB=AC+CE=CD+CE=5a,AD=AC+CD=2CD=6a,
∴.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点,且EG、FH交于点O.若AC=4,则EG2+FH2=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足,连接AF并延长交⊙O于点E,连接AD,DE,若CF=2,AF=3,给出下列结论:①△ADF∽△AED;②FG=2;③tanE=;④S△DEF=4.其中正确的是( )
A. ①②③ B. ②③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是小章为学校举办的数学文化节没计的标志,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空自部分面积为10.5,则阴影部分面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在方格纸中
(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;
(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;
(3)计算△A′B′C′的面积S.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠B=30°,点D从点B出发,沿B→C方向运动到点C(D不与B,C重合),连接AD,作∠ADE=30°,DE交线段AC于点E.设∠B4D=x°,∠AED=y°.
(1)当BD=AD时,求∠DAE的度数;
(2)求y与x的关系式;
(3)当BD=CE时,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上.将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.
(1)在正方形网格中,画出△AB′C′;
(2)计算线段AB在变换到AB′的过程中扫过的区域的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地要建一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安装在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.如图建立平面直角坐标系,已知A(),顶点P()
(1) 求抛物线的解析式
(2) 若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校对八年级学生上学的4种方式:骑车、步行、乘车、接送,进行抽样调查,结果如图(1)、图(2).
(1)该抽样调查中样本容量是__________,其中,步行人数占样本容量的____%,骑车人数占样本容量的____%,乘车人数占样本容量的____%.
(2)请把条形统计图补充完整;
(3)根据调查结果,你估计该校八年级500名学生中,大约有多少名学生是由家长接送上学的?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com