精英家教网 > 初中数学 > 题目详情

【题目】如图,将一个半径为,圆心角为的扇形,如图放置在直线上(与直线重合),然后将这个扇形在直线上无摩擦滚动至的位置,在这个过程中,点运动到点的路径长度为(

A. B. 3π+3 C. D. 5π-3

【答案】A

【解析】

仔细观察顶点O经过的路线可得,顶点O经过的路线可以分为三段,分别求出三段的长,再求出其和即可.

顶点O经过的路线可以分为三段,当弧AB切直线l于点A时,有OA⊥直线l,此时O点绕不动点A转过了90°;
第二段:OA⊥直线l到OB⊥直线l,O点绕动点转动,而这一过程中弧AB始终是切于直线l的,所以O与转动点P的连线始终⊥直线l,所以O点在水平运动,此时O点经过的路线长=BA′=AB的弧长
第三段:OB⊥直线l到O点落在直线l上,O点绕不动点B转过了90°.
所以,O点经过的路线总长S=π+π+π=4π.
故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABBC,∠ABC90°EBC边上一点(不与BC重合)DAB延长线上一点且BDBE.FG分别为AECD的中点.

(1)求证:AECD.

(2)求证:△BFG为等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在RtABC中,∠ACB90°ABAC,点D在直线AB上,连接CD,在CD的右侧作CECDCDCE

1)如图1,①点DAB边上,直接写出线段BE和线段AD的关系;

2)如图2,点DB右侧,BD1BE5,求CE的长.

3)拓展延伸

如图3,∠DCE=∠DBE90CDCEBCBE1,请直接写出线段EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一棵树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5.

1)河的宽度是 .

2)请你说明他们做法的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以点P(-1,0)为圆心的圆,交x轴于B、C两点(BC的左侧),交y轴于A、D两点(AD的下方),AD=,将ABC绕点P旋转180°,得到MCB.

(1)求B、C两点的坐标;

(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;

(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线lCM交点为E,点QBE的中点,过点EEGBCG,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,直径,半径,点上,且点与点在直径的两侧,连结.若,则的度数是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知中,厘米,厘米,点的中点.如果点在线段上以每秒2厘米的速度由点向点运动,同时,点在线段上以每秒厘米的速度由点向点运动,设运动时间为(秒)

1)用含的代数式表示的长度;

2)若点的运动速度相等,经过1秒后,是否全等,请说明理由;

3)若点的运动速度不相等,当点的运动速度为多少时,能够使全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)RtABC中,∠ACB=-90°CDAB,垂足为DAF平分∠CAB,交CD于点E,交CB于点F

1)求证:CE=CF

2)将图(1)中的ADE沿AB向右平移到A’D’E’的位置,使点E’落在BC边上,其它条件不变,如图(2)所示.试猜想:BE'CF有怎样的数量关系?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在(

A.在∠A、∠B两内角平分线的交点处

B.ACBC两边垂直平分线的交点处

C.ACBC两边高线的交点处

D.ACBC两边中线的交点处

查看答案和解析>>

同步练习册答案