【题目】如图(1),Rt△ABC中,∠ACB=-90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F
(1)求证:CE=CF.
(2)将图(1)中的△ADE沿AB向右平移到△A’D’E’的位置,使点E’落在BC边上,其它条件不变,如图(2)所示.试猜想:BE'与CF有怎样的数量关系?请证明你的结论.
【答案】(1)见解析
(2)相等。证明见解析
【解析】
(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,
(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断出△CEG≌△BE′D′,可知CE=BE′,再根据等量代换可知BE′=CF.
(1)证明:∵AF平分∠CAB,
∴∠CAF=∠EAD,
∵∠ACB=90°,
∴∠CAF+∠CFA=90°,
∵CD⊥AB于D,
∴∠EAD+∠AED=90°,
∴∠CFA=∠AED,又∠AED=∠CEF,
∴∠CFA=∠CEF,
∴CE=CF;
(2)猜想:BE′=CF.
证明:如图,
过点E作EG⊥AC于G,连接EE′,
又∵AF平分∠CAB,ED⊥AB,EG⊥AC,
∴ED=EG,
由平移的性质可知:D′E′=DE,
∴D′E′=GE,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°
∵CD⊥AB于D,
∴∠B+∠DCB=90°,
∴∠ACD=∠B,
在△CEG与△BE′D′中,
,
∴△CEG≌△BE′D′(AAS),
∴CE=BE′,
由(1)可知CE=CF,
∴BE′=CF.
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bc+c的图象如图所示,则下列判断中错误的是( )
A. 图象的对称轴是直线x=﹣1 B. 当x>﹣1时,y随x的增大而减小
C. 当﹣3<x<1时,y<0 D. 一元二次方程ax2+bx+c=0的两个根是﹣3,1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一个半径为,圆心角为的扇形,如图放置在直线上(与直线重合),然后将这个扇形在直线上无摩擦滚动至的位置,在这个过程中,点运动到点的路径长度为( )
A. 4π B. 3π+3 C. 5π D. 5π-3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.
(1)证明:四边形ACDE是平行四边形;
(2)若AC=4,BD=3,求△ADE的周长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N,动点P在线段BA上以每秒cm的速度由点B向点A运动.同时,动点Q在线段AC上由点N向点C运动,且始终保持MQ⊥MP.一个点到终点时两个点同时停止运动,设运动的时间为t秒(t>0).
(1)求证:△PBM∽△QNM.
(2)若∠ABC=60°,AB=4cm,
①求动点Q的运动速度;
②设△APQ的面积为S(cm2),求S与t的等量关系式(不必写出t的取值范围).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com