【题目】边长为,,的三角形,其内心和外心间的距离为________.
【答案】
【解析】
根据题意作图.利用在Rt△ABC,可求得AB=10cm,根据内切圆的性质可判定四边形OECD是正方形,所以用r分别表示:CE=CD=r,AE=AN=6-r,BD=BN=8-r,利用AB作为相等关系求出r=2cm,则可得AN=4cm,N为圆与AB的切点,M为AB的中点,根据直角三角形中外接圆的圆心是斜边的中点,即M为外接圆的圆心,在Rt△OMN中,先求得MN=AM-AN=1cm,由勾股定理可求得OM=cm.
如图:
在Rt△ABC,∠C=90°,AC=6cm,BC=8cm,AB=10cm.
设Rt△ABC的内切圆的半径为r,则OD=OE=r,
∵∠C=90°,
∴CE=CD=r,AE=AN=6-r,BD=BN=8-r,
∴8-r+6-r=10,
解得r=2cm,
∴AN=4cm,
在Rt△OMN中,MN=AM-AN=1cm,
∴OM=cm.
故答案是:cm.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC,∠ACB=90°.分别以AB,AC为边作正方形ABEF和正方形ACMN,连接FN.若AC=4,BC=3,则S△ANF=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一棵树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.
(1)河的宽度是 米.
(2)请你说明他们做法的正确性.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知中,,厘米,厘米,点为的中点.如果点在线段上以每秒2厘米的速度由点向点运动,同时,点在线段上以每秒厘米的速度由点向点运动,设运动时间为(秒).
(1)用含的代数式表示的长度;
(2)若点、的运动速度相等,经过1秒后,与是否全等,请说明理由;
(3)若点、的运动速度不相等,当点的运动速度为多少时,能够使与全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面积;
(2)在图形中作出△ABC关于x轴的对称图形△A1B1C1,写出点A1,B1,C1的坐标;
(3)点P在y轴上,使PB+PC的长最小,请在y轴上标出点P的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),Rt△ABC中,∠ACB=-90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F
(1)求证:CE=CF.
(2)将图(1)中的△ADE沿AB向右平移到△A’D’E’的位置,使点E’落在BC边上,其它条件不变,如图(2)所示.试猜想:BE'与CF有怎样的数量关系?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作,它建立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系﹣﹣﹣几何学.以下是《几何原本》第一卷中的命题6,请完成它的证明过程.
命题6:如果一个三角形有两个角相等,那么这两个角所对的边也相等.
已知: .
求证: .
证明:若AB≠AC,其中必有一个较大,不妨设AB>AC,在AB上截取BD=AC,
连接DC.
∵ ,
,
,
∴△ACB≌△DBC
∴∠BDC=∠CAB .
又∠BDC>∠CAB .
∴∠BDC与∠CAB即等于又大于,显然是矛盾的.
∴假设不成立,即AB=AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线的解析式为,且与轴交于点D,直线经过点、,直线、交于点C.
(1)求直线的解析表达式;
(2)求的面积;
(3)在直线上存在异于点C的另一点P,使得与的面积相等,请求出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com