【题目】点A、B在数轴上的位置如图所示:
(1)点A表示的数是 ,点B表示的数是 ;
(2)在原图中分别标出表示+1.5的点C、表示﹣3.5的点D;
(3)在上述条件下,B、C两点间的距离是 ,A、C两点间的距离是 .
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD中,AD=5,AB=3.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论: ① c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am+bm+a>0(m≠﹣1);⑤设A(100,y),B(﹣100,y)在该抛物线上,则y>y.其中正确的结论有___________ .(写出所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动:擦出智慧的火花---------由特殊到一般的数学思想.
数学课上,李老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC上的点,过点E作EF⊥AE,过点F作FG⊥BC交BC的延长线于点G..
(1)求证:∠BAE=∠FEG.
(2)同学们很快做出了解答,之后李老师将题目修改成:如图2,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.请借助图1完成小明的证明;
在(2)的基础上,同学们作了进一步的研究:
(3)小聪提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小聪的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,两个圈分别表示负数集和分数集. 请你把下列各数填入表示它所在的数集的圈里:
-50% , 2011 , 0.618 , -3 , ,0 , 5.9,-3.14 , -92 .
(2)图中,这两个圈的重叠部分表示什么数的集合?
(3)在(1)的数据中,求最大的数与最小的数之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在面积为60的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=10,BC=12,则CE+CF的值为( )
A. 22-11B.
C. 或D. 或
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知两点、在数轴上,,点表示的数是,且与互为相反数.
(1)写出点表示的数;
(2)如图1,当点、位于原点的同侧时,动点、分别从点、处在数轴上同时相向而行,动点的速度是动点的速度的2倍,3秒后两动点相遇,当动点到达点4时,运动停止.在整个运动过程中,当时,求点、所表示的数;
(3)如图2,当点、位于原点的异侧时,动点、分别从点、处在数轴上向右运动,动点比动点晚出发1秒;当动点运动2秒后,动点到达点处,此时动点立即掉头以原速向左运动3秒恰与动点相遇;相遇后动点又立即掉头以原速向右运动5秒,此时动点到达点处,动点到达点处,当时,求动点、运动的速度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com