【题目】古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把l、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的正方形数”都可以看作两个相邻“三角形数”之和.下列等式中。符合这一规律的是( )
A. 15=4+11 B. 25=9+16
C. 49=21+28 D. 61=25+36
【答案】C
【解析】∵1=1,1+2=3,1+2+3=6,1+2+3+4=10,…,
∴“三角形数”可看成从1开始几个连续自然数的和;
∵1=12,4=22,9=32,16=42,…,
∴“正方形数”可看成某个自然数的平方。
A.∵在15=4+11中,15不是“正方形数”,且3、10不是两个相邻“三角形数”,
∴A选项不符合题意;
B.∵在25=9+16中,9、16、25是相邻的三个“正方形数”,
∴B选项不符合题意;
C.∵1+2+3+4+5+6=21,1+2+3+4+5+6+7=28,
∴21、28是两个相邻“三角形数”,
∵49=72,
∴49是“正方形数”,
C选项符合题意;
D.∵在61=25+36中,61不是“正方形数”,
∴D选项不符合题意。
故选C.
科目:初中数学 来源: 题型:
【题目】甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时.
(1)分别求线段BC、DE所在直线对应的函数关系式.
(2)当甲队清理完路面时,求乙队铺设完的路面长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图Ⅰ,在第四象限的矩形ABCD,点A与坐标原点O重合,且AB=4,AD=3.如图Ⅱ,矩形ABCD沿OC方向以每秒1个单位长度的速度运动,同时点Q从B点出发也以每秒1个单位长度的速度沿矩形ABCD的边BC经过点C向点D运动,当点Q到达点D时,矩形ABCD和点Q同时停止运动,设点Q运动的时间为t秒.
(1)在图Ⅰ中,点C的坐标(____),在图Ⅱ中,当t=2时,点A坐标(______),Q坐标(______)
(2)当点Q在线段BC或线段CD上运动时,求出△ACQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)点Q在线段BC或线段CD上运动时,作QM⊥x轴,垂足为点M,当△QMO与△ACD相似时,求出相应的t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,△TAB顶点坐标分别为T(1,1)、A(2,3)、B(4,2).
(1)以点T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;
(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的中线BE与CD交于点G,连接DE,下列结论不正确的是( )
A.点G是△ABC的重心
B.DE∥BC
C.△ABC的面积=2△ADE的面积
D.BG=2GE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,AB是⊙O的一条弦,点C是优弧上一点.
(1)若∠ACB=45°,点P是⊙O上一点(不与A、B重合),则∠APB= ;
(2)如图②,若点P是弦AB与所围成的弓形区域(不含弦AB与)内一点.求证:∠APB>∠ACB;
(3)请在图③中直接用阴影部分表示出在弦AB与所围成的弓形区域内满足∠ACB<∠APB<2∠ACB的点P所在的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com