【题目】如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边BC上的一个动点,EG=EF,且∠GEF=60°,则GB+GC的最小值为__.
【答案】2.
【解析】
取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;先证明E点与E'点重合,再在Rt△EBC中,EB=2,BC=4,求EC的长.
取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,
此时CE的长就是GB+GC的最小值;
∵MN∥AD,
∴HM=AE,
∵HB⊥HM,AB=4,∠A=60°,
∴MB=2,∠HMB=60°,
∴HM=1,
∴AE'=2,
∴E点与E'点重合,
∵∠AEB=∠MHB=90°,
∴∠CBE=90°,
在Rt△EBC中,EB=2,BC=4,
∴EC=2,
故答案为2;
科目:初中数学 来源: 题型:
【题目】定义:点P(a,b)关于原点的对称点为P′,以PP′为边作等边△PP′C,则称点C为P的“等边对称点”;
(1)若P(1,3),求点P的“等边对称点”的坐标.
(2)平面内有一点P(1,2),若它其中的一个“等边对称点”C在第四象限时,请求此C点的坐标;
(3)若P点是双曲线y=(x>0)上一动点,当点P的“等边对称点”点C在第四象限时,
①如图(1),请问点C是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.
②如图(2),已知点A (1,2),B (2,1),点G是线段AB上的动点,点F在y轴上,若以A、G、F、C这四个点为顶点的四边形是平行四边形时,求点C的纵坐标yc的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一科技小组进行了机器人行走性能试验.在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,经过7min同时到达C点,乙机器人始终以60m/min的速度行走,如图是甲、乙两机器人之间的距离y(m)与他们的行走时间x(min)之间的函数图象,请结合图象,回答下列问题:
(1)A、B两点之间的距离是 .m,甲机器人前2min的速度为 .m/min;
(2)若前3min甲机器人的速度不变,求线段EF所在直线的函数解析式;
(3)直接写出两机器人出发多长时间相距28m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+4x+c过点A(6,0)、B(3,),与y轴交于点C.联结AB并延长,交y轴于点D.
(1)求该抛物线的表达式;
(2)求△ADC的面积;
(3)点P在线段AC上,如果△OAP和△DCA相似,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车在相遇之前同时改变了一次速度,并同时到达各自目的地,两车距B地的路程y(km)与出发时间x(h)之间的函数图象如图所示.
(1)分别求甲、乙两车改变速度后y与x之间的函数关系式;
(2)若m=1,分别求甲、乙两车改变速度之前的速度;
(3)如果两车改变速度时两车相距90km,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做“半高三角形”.
如图1,对于△ABC,BC边上的高AD等于BC的一半,△ABC就是半高三角形,此时,称△ABC是BC类半高三角形;如图2,对于△EFG,EF边上的高GH等于EF的一半,△EFG就是半高三角形,此时,称△EFG是EF类半高三角形.
(1)直接写出下列3个小题的答案.
①若一个三角形既是等腰三角形又是半高三角形,则其底角度数的所有可能值为 .
②若一个三角形既是直角三角形又是半高三角形,则其最小角的正切值为 .
③如图3,正方形网格中,L,M是已知的两个格点,若格点N使得△LMN为半高三角形,且△LMN为等腰三角形或直角三角形,则这样的格点N共有 个.
(2)如图,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点T坐标为(0,5),点P是抛物线y=x2上的一个动点,点Q是坐标系内一点,且使得△RSQ为RS类半高三角形.
①当点P介于点R与点S之间(包括点R,S),且PQ取得最小值时,求点P的坐标.
②当点P介于点R与点O之间(包括点R,O)时,求PQ+QT的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AB=5,BC=4. 点D是边AC的中点,点E在边AB上,将△ADE沿DE翻折,使点A落在点A′处,当线段AE的长为_______时,A′E∥BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料:
如果函数满足:对于自变量的取值范围内的任意,,
(1)若,都有,则称是增函数;
(2)若,都有,则称是减函数.
例题:证明函数是减函数.
证明:设,
.
∵,
∴,.
∴.即.
∴.
∴函数是减函数.
根据以上材料,解答下面的问题:
已知函数,
,
(1)计算: , ;
(2)猜想:函数是 函数(填“增”或“减”);
(3)请仿照例题证明你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com