精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD内接于⊙O,∠BAD=90°,ADBC的延长线交于点F,点ECF上,且∠DEC=∠BAC

1)求证:DE是⊙O的切线;

2)当AB=AC时,若CE=2EF=3,求⊙O的半径.

【答案】(1)证明见解析;(2)

【解析】

(1)先判断出BD是圆O的直径,再判断出BDDE,即可得出结论;

(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的判定得到DE=EF=3,根据勾股定理得到CD,证明△CDE∽△DBE,根据相似三角形的性质即可得到结论.

(1)如图,连接BD

∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.

∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.

∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BDDE

∵点DO上,∴DEO的切线;

(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°.

AB=AC,∴∠ABC=∠ACB

∵∠ADB=∠ACB,∴∠F=∠FDE,∴DE=EF=3.

CE=2,∠BCD=90°,∴∠DCE=90°,∴CD

∵∠BDE=90°,CDBE,∴∠DCE=∠BDE=90°.

∵∠DEC=∠BED,∴△CDE∽△DBE,∴,∴BD,∴O的半径

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与轴正半轴相交于A、B两点,轴相交于点C,对称轴为直线OA=OC,则下列结论:①④关于的方程有一个根为其中正确的结论个数有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是( )

A. 汽车在0~1小时的速度是60千米/时; B. 汽车在2~3小时的速度比0~0.5小时的速度快;

C. 汽车从0.5小时到1.5小时的速度是80千米/时; D. 汽车行驶的平均速度为60千米/时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,⊙O的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P⊙A的切线,且点为B,则PB的最小值是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2-(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.

(1)求m的值;

(2)求A、B两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于BC两点.

(1)求yx之间的函数关系式;

(2)直接写出当x>0时,不等式x+b的解集;

(3)若点Px轴上,连接APABC的面积分成1:3两部分,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2345.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.

1)用列表法或画树状图法,求小丽参赛的概率.

2)你认为这个游戏公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的顶点A、C在平面直角坐标系的坐标轴上,AB=4,CB=3,点D与点A关于y轴对称,点E、F分别是线段DA、AC上的动点(点E不与A、D重合),且∠CEF=ACB,若△EFC为等腰三角形,则点E的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点AB之间的距离为10cm,双翼的边缘ACBD54cm,且与闸机侧立面夹角∠PCA=∠BDQ30°.当双翼收起时,可以通过闸机的物体的最大宽度为(  )

A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm

查看答案和解析>>

同步练习册答案