分析 (1)直接利用HL定理得出Rt△ABC≌Rt△DEF;
(2)首先得出△CBG≌△FEH(AAS),则CG=FH,进而得出Rt△ACG≌Rt△DFH,再求出△ABC≌△DEF;
(3)利用已知图形再做一个钝角三角形即可得出答案;
(4)利用(3)中方法可得出当∠B≥∠A时,则△ABC≌△DEF.
解答 (1)解:如图①,
∵∠B=∠E=90°,
∴在Rt△ABC和Rt△DEF中,$\left\{\begin{array}{l}{AC=DF}\\{BC=EF}\end{array}\right.$,
∴Rt△ABC≌Rt△DEF(HL),
故答案为:HL;
(2)证明:如图②,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,
∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,
∴180°-∠ABC=180°-∠DEF,
即∠CBG=∠FEH,
在△CBG和△FEH中,$\left\{\begin{array}{l}{∠CBG=∠FEH}\\{∠G=∠H=90°}\\{BC=EF}\end{array}\right.$,
∴△CBG≌△FEH(AAS),
∴CG=FH,
在Rt△ACG和Rt△DFH中,$\left\{\begin{array}{l}{AC=DF}\\{CG=FH}\end{array}\right.$,
∴Rt△ACG≌Rt△DFH(HL),
∴∠A=∠D,
在△ABC和△DEF中,$\left\{\begin{array}{l}{∠A=∠D}\\{∠ABC=∠DEF}\\{AC=DF}\end{array}\right.$,
∴△ABC≌△DEF(AAS);
(3)解:如图③中,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,
△DEF和△ABC不全等;
(4)解:由图③可知,∠A=∠CDA=∠B+∠BCD,
∴∠A>∠B,
∴当∠B≥∠A时,△ABC就唯一确定了,
则△ABC≌△DEF.
故答案为:∠B≥∠A.
点评 此题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com