精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,∠A=45°,DAC边上一点,⊙O经过D、A、B三点,ODBC.

(1)求证:BC与⊙O相切;

(2)若OD=15,AE=7,求BE的长.

【答案】(1)见解析;(2)18.

【解析】分析:(1)连接OB,求出∠DOB度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;
(2)延长BO交⊙O于点F,连接AF,求出∠ABF,解直角三角形求出BE.

详解:(1)证明:连接OB.

∵∠A=45°,

∴∠DOB=90°.

∵OD∥BC,

∴∠DOB+∠CBO=180°.

∴∠CBO=90°.

∴直线BC是⊙O的切线.

(2)解:连接BD.则△ODB是等腰直角三角形,

∴∠ODB=45°,BD=OD=15

∵∠ODB=∠A,∠DBE=∠DBA,

∴△DBE∽△ABD,

∴BD2=BEBA,

∴(152=(7+BE)BE,

∴BE=18或﹣25(舍弃),

∴BE=18.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一副三角板按图 1 所示的位置摆放,将DEF 绕点 A(F)逆时针旋转 60°后(图 2), 测得 CG8cm,则两个三角形重叠(阴影)部分的面积为()

A. 1616 cm2

B. 16 cm2

C. 16 cm2

D. 48cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC绕点A顺时针旋转60°得到ADE,点C的对应点E恰好落在BA的延长线上,DEBC交于点F,连接BD.下列结论不一定正确的是(  )

A. AD=BD B. ACBD C. DF=EF D. CBD=E

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过点(﹣1,0),与x轴的另一个交点在点(1,0)和(2,0)之间,对称轴l如图所示,则下列结论:①abc>0;a﹣b+c=0;a+c>0;2a+c<0,其中正确的结论个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班级为奖励参加校运动会的运动员,分别用160元和120元购买了相同数量的甲、乙两种奖品,其中每件甲种奖品比每件乙种奖品贵4.

请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,cm, cm,中,cmcmEFBC上,保持不动,并将1cm/s的速度向点C运动,移动开始前点F与点B重合,当点E与点C重合时,停止移动.边DEAB相交于点G,连接FG,设移动时间为ts).

1从移动开始到停止,所用时间为________s

2)当DE平分AB时,求t的值;

3)当为等腰三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边AOB的边长为4,点P从点O出发,沿OA以每秒1个单位的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CPCA.在点POA运动的过程中,当PCA为直角三角形时t的值为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB⊙O的直径,AC是弦,直线EF经过点CAD⊥EF于点D∠DAC=∠BAC

1)求证:EF⊙O的切线;

2)若⊙O的半径为2∠ACD=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yk1x+1与双曲线y相交于P(1,m),Q(-2,-1)两点.

(1)求m的值;

(2)若A1(x1y1),A2(x2y2),A3(x3y3)为双曲线上三点,且x1<x2<0<x3,请直接说明y1y2y3的大小关系;

(3)观察图象,请直接写出不等式k1x+1>的解集.

查看答案和解析>>

同步练习册答案