精英家教网 > 初中数学 > 题目详情

【题目】如图,直线yk1x+1与双曲线y相交于P(1,m),Q(-2,-1)两点.

(1)求m的值;

(2)若A1(x1y1),A2(x2y2),A3(x3y3)为双曲线上三点,且x1<x2<0<x3,请直接说明y1y2y3的大小关系;

(3)观察图象,请直接写出不等式k1x+1>的解集.

【答案】(1) 2(2) y2<y1<y3(3)2<x<0或x>1.

【解析】试题分析:(1)把把Q(-2,-1)代入反比例函数的解析式求得函数解析式,然后把P代入求得m的值;
(2)根据反比例函数的图象,根据自变量的相对位置,结合图象即可确定;
(3)不等式k1x+1>的解集就是对相同的x的值,一次函数的图象在上边的部分x的范围.

试题解析(1)∵双曲线y经过点Q(2,-1)k2=-2×(1)2

∴双曲线的解析式为y

又∵点P(1m)在双曲线y上,∴m2.

(2)A1(x1y1)A2(x2y2)A3(x3y3)为双曲线y上的三点,且x1<x2<0<x3根据反比例函数的性质可得y2<y1<y3.

(3)由图象可知不等式k1x1>的解集为-2<x<0x>1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠A=45°,DAC边上一点,⊙O经过D、A、B三点,ODBC.

(1)求证:BC与⊙O相切;

(2)若OD=15,AE=7,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 阅读理解我们知道在直角三角形中,有无数组勾股数例如:5、12、13;9、40、41;……但其中也有一些特殊的勾股数,例如:3、4、5;是三个连续正整数组成的勾股数.

解决问题:① 在无数组勾股数中,是否存在三个连续偶数能组成勾股数?

答: ,若存在,试写出一组勾股数: .

在无数组勾股数中,是否还存在其它的三个连续正整数能组成勾股数?若存在,求出勾股数,若不存在,说明理由.

在无数组勾股数中,是否存在三个连续奇数能组成勾股数?若存在,求出勾股数,若不存在,说明理由.

探索升华:是否存在锐角ABC三边也为连续正整数;且同时还满足:∠BCAABC=2BAC若存在,求出ABC三边的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1876年,美国总统Garfield用如图所示的两个全等的直角三角形证明了勾股定理,若图中,则下面结论错误的是( )

A. B. C. D. 是等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.

(1)求抛物线的解析式及点D的坐标;

(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;

(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD内接于⊙OA的中点,AEACA,与⊙OCB的延长线交于点FE,且.

(1)求证:△ADC∽△EBA

(2)如果AB8CD5,求tan∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】老师和小明同学玩数学游戏.老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率.于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果.如图是小明同学所画的正确树状图的一部分.

(1)补全小明同学所画的树状图;

(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.

(1)求证:△ACF∽△DAE;

(2)若S△AOC=,求DE的长;

(3)连接EF,求证:EF是⊙O的切线.

【答案】(1) 见解析; (2)3 ;(3)见解析.

【解析】试题分析:(1)根据圆周角定理得到BAC=90°,根据三角形的内角和得到ACB=60°根据切线的性质得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到结论;

(2)根据SAOC=,得到SACF=,通过ACF∽△DAE,求得SDAE=,过AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;

(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,过OOGEFG,根据全等三角形的性质得到OG=OA,即可得到结论.

试题解析:(1)证明:BCO的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切线,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,过AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFOAOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFOOA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFOOF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切线.

型】解答
束】
25

【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.

(1)填空:点B的坐标为   

(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;

(3)①求证:

②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】瞳瞳做一道数学题:求代数式x=-1时的值,由于瞳瞳粗心把式子中的某一项前的“+”号错误地看成了“—”号,算出代数式的值是-11,那么瞳瞳看错的是 次项前的符号,写出x=-1x=1时代数式的值.

查看答案和解析>>

同步练习册答案