【题目】同学们都学习过《几何》课本第三册第199页的第11题,它是这样的:如图,A为⊙O的直径EF上的一点,OB是和这条直径垂直的半径,BA和⊙O相交于另一点C,过点C的切线和EF的延长线相交于点D,求证:DA=DC.
(1)现将图1中的直径EF所在直线进行平行移动到图2所示的位置,此时OB与EF垂直相交于H,其它条件不变.
①求证:DA=DC;
②当DF:EF=1:8,且DF=时,求ABAC的值.
(2)将图2中的EF所在直线继续向上平行移动到图3所示的位置,使EF与OB的延长线垂直相交于H,A为EF上异于H的一点,且AH小于⊙O的切线交EF于D,试猜想:DA=DC是否仍然成立?证明你的结论.
【答案】(1)①见解析②24(2)结论DA=DC仍然成立
【解析】
(1)①连接OC,利用切线的性质则可得到OC⊥DC,然后得到∠DCA=90°-∠ACO=90°-∠B=∠DAC,利用等角对等边得到DA=DC即可;
②利用DF:EF=1:8,DF=则可得到EF=8DF=8,然后利用切线长定理求得DC的长,进而得到DC、AD的长,然后利用切线长定理得:ABAC=AEAF=24;
(2)结论仍然成立,延长BO交⊙O于K,连CK,利用切线的性质可以得到∠DCA=∠CKB=90°-∠CBK,从而得到∠DCA=∠BAH,问题得证.
(1)①证明:连OC,则OC⊥DC,
∴∠DCA=90°﹣∠ACO=90°﹣∠B,
又∠DAC=∠BAE=90°﹣∠B,
∴∠DAC=∠DCA∴DA=DC,
②∵DF:EF=1:8,DF=,
∴EF=8DF=8,
又DC为切线,
∴DC2=DFDE=×9=18,
∴DC=3,
∴AD=DC=3,
∴AF=AD﹣DF=2,
∴AE=EF﹣AF=6,
∴ABAC=AEAF=24;
(2)结论DA=DC仍然成立,理由如下:
延长BO交⊙O于K,连CK,则∠KCB=90°,
又DC为⊙O的切线,
∴∠DCA=∠CKB=90°﹣∠CBK,
又∠BAH=90°﹣∠HBA,
而∠CBK=∠HBA,
∴∠DCA=∠BAH,
∴DA=DC.
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.
(1)①点A(1,3)的“坐标差”为 ;
②抛物线y=﹣x2+3x+4的“特征值”为 ;
(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.
①直接写出m= ;(用含c的式子表示)
②求此二次函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E现有下列结论:①b2﹣4a<0;②b>0;③5a+b<0;④AD+CE=4.其中正确结论个数为( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示。
销售量p(件) | P=50—x |
| 当1≤x≤20时, |
(1)请计算第几天该商品的销售单价为35元/件?
(2)求该网店第x天获得的利润y关于x的函数关系式。
(3)这40天中该网店第几天获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④APAD=CQCB.其中正确的是_____(写出所有正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:抛物线y=mx2+(m﹣2)x﹣2m+2(m≠0).
(1)求证:抛物线与x轴有交点;
(2)若抛物线与x轴交于点A(x1,0),B(x2,0),点A在点B的右侧,且x1+2x2=1.
①求m的值;
②点P在抛物线上,点G(n,﹣n﹣),求PG的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某同学对一道作业题的解题思路,课堂上师生据此展开了讨论.问题如图,已知A(1,)、B(4,0),∠OAB的平分线AC交x轴于点C,求OC的长.思路:作AD⊥OB,CE⊥AB,CF⊥OA
①A坐标→OD=1,AD=,OA=2→∠AOC=60°;
②A、B坐标→OA=2,OB=4,AB=2→∠OAB=90°;
③AC平分∠OAB→CE=CF;
④S△AOC+S△ABC=S△AOB→AOCF+ABCE=OAAB→CF=3﹣;
⑤综上,Rt△OCF中,OC=﹣2.可以优化吗?
(1)同学们发现不需要证“∠OAB=90°”也能求解,简要说明理由.几位同学提出了不同的思路
①甲说:S△AOC和S△ABC的面积之比既是,又是,从而;
②乙说:在AB边上取点G,使AG=AO,连接CG,可知BG的长即为所求;
③丙说:延长AC交△AOB的外接圆于N,再利用一次函数或相似求出OC.
请你选择其中一种解法,利用图2和已有步骤完成解答.有什么收获?
(2)面积法是图形问题中确定数量关系的有效方法,请利用面积法求解:如图1,⊙O与△ABC的边AC,边BA、BC的延长线AE、CF相切,切点分别为D、E、F.设△ABC的面积为S,BC=a,AC=b,AB=c,请用含S、a、b、c的式子表示⊙O的半径R,直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形.若存在,请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到 达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.
(1)判断直线MN与⊙O的位置关系,并说明理由;
(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com