【题目】已知:抛物线y=mx2+(m﹣2)x﹣2m+2(m≠0).
(1)求证:抛物线与x轴有交点;
(2)若抛物线与x轴交于点A(x1,0),B(x2,0),点A在点B的右侧,且x1+2x2=1.
①求m的值;
②点P在抛物线上,点G(n,﹣n﹣),求PG的最小值.
【答案】(1)见解析;(2)①m=1;②PG的最小值=
【解析】
(1)令y=0,再求出的方程的△是否大于等于0即可;
(2)①令y=0,解一元二次方程,再根据已知点A在点B的右侧,且,求解即可;②先假设与直线平行的直线l的关系式为,
若直线l与抛物线只有一个交点C,列方程,根据得b的值,则点C到直线的距离就是PG的最小值.
(1)当y=0时,
.
∴抛物线与x轴有交点;
(2)①当y=0时,,
解得或,
∵点A在点B的右侧,
∴,
∵,
∴ 当,时,1+2,解得m=1,
此时,,满足,故m=1符合题意,
当,时,,解得m=2.
此时,,与矛盾,故m=2不符合题意.
∴m=1;
②
当m=1时,抛物线解析式为 ,
∵点G,
∴点G在直线上.
假设与直线平行的直线l的关系式
为,
若直线l与抛物线只有一个交点C,
则此时方程 的,解得b=.
∴直线l的关系式 ,
如图,直线l与x轴,y轴分别交于D,M两点,直线
与y轴交于N点,
∴D(,0),M(0,).
∴OD=,OM=.
∴MN=,
DM== ,
过点M作MH⊥HN,CE⊥EN,当P点与C点重合,G点与E点重合时,PG长最小,
此时△MHN∽△DOM,
∴,即,
∴PG=MH=,
即PG的最小值是 .
故答案为:(1)见解析;(2)①m=1;②PG的最小值=.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A逆时针旋转α度(30<α<150)得到△AB′C′,B、C两点的对应点分别为点B′、C′,连接BC′,BC与AC、AB′相交于点E、F.
(1)当α=70时,∠ABC′=_____°,∠ACB′=______°.
(2)求证:BC′∥CB′.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们都学习过《几何》课本第三册第199页的第11题,它是这样的:如图,A为⊙O的直径EF上的一点,OB是和这条直径垂直的半径,BA和⊙O相交于另一点C,过点C的切线和EF的延长线相交于点D,求证:DA=DC.
(1)现将图1中的直径EF所在直线进行平行移动到图2所示的位置,此时OB与EF垂直相交于H,其它条件不变.
①求证:DA=DC;
②当DF:EF=1:8,且DF=时,求ABAC的值.
(2)将图2中的EF所在直线继续向上平行移动到图3所示的位置,使EF与OB的延长线垂直相交于H,A为EF上异于H的一点,且AH小于⊙O的切线交EF于D,试猜想:DA=DC是否仍然成立?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC上,AD与EF交于点M.
(1)求证:;
(2)设EF=x,EH=y,写出y与x之间的函数表达式;
(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并写出S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.
(1)求此抛物线的解析式.
(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.
(1)试求A,B,C的坐标;
(2)将△ABC绕AB中点M旋转180°,得到△BAD.3
①求点D的坐标;
②判断四边形ADBC的形状,并说明理由;
(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.
(1)求∠ACM的度数;
(2)在MN上是否存在一点D,使ABCD=ACBC,为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com