【题目】如图,正方形网格中每个小正方形边长都是1.
(1)画出△ABC关于直线1对称的图形△A1B1C1;
(2)在直线l上找一点P,使PB=PC;(要求在直线1上标出点P的位置)
(3)在直线l上找一点Q,使点Q到点B与点C的距离之和最小.
科目:初中数学 来源: 题型:
【题目】如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.
(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?
(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;
(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a+b=1,ab=-1.设
(1)计算S2;
(2)请阅读下面计算S3的过程:
=
=
=
∵a+b=1,ab=-1,
∴_______.
你读懂了吗?请你先填空完成(2)中S3的计算结果;再计算S4;
(3)猜想并写出, , 三者之间的数量关系(不要求证明,且n是不小于2的自然数),根据得出的数量关系计算S3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将直角三角形分割成一个正方形和两对全等的直角三角形,在中,,,,;在正方形中,.
探究1
(1)小明发现了求正方形边长的方法:由题意可得,,因为,所以,解得
探究2
(2)小亮发现了另一种求正方形边长的方法:连接,利用可以得到与的关系.请根据小亮的思路完成他的求解过程.
探究3
(3)请结合小明和小亮得到的结论验证勾股定理.(注:根据比例的基本性质,由可得)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a﹣2b+3c的值.
【答案】16.
【解析】试题根据比例的性质可设a=2k,b=3k,c=4k,则利用2a+3b-2c=10得到4k+9k-8k=10,解得k=2,于是可求出a、b、c的值,然后计算a-2b+3c的值.
试题解析:∵a:b:c=2:3:4,
∴设a=2k,b=3k,c=4k,
而2a+3b-2c=10,
∴4k+9k-8k=10,解得k=2,
∴a=4,b=6,c=8,
∴a-2b+3c=4-12+24=16.
考点:比例的性质.
【题型】解答题
【结束】
24
【题目】计算:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是___.
【答案】-3.
【解析】
解:∵x=1是一元二次方程的根,∴12+k×1-3=0,∴k=2,∴x2+2x-3=0,∴(x+3)(x-1)=0,∴x1=-3,x2=1.故答案为:-3.
【题型】填空题
【结束】
19
【题目】如图,在△ABC中,AB=8,AC=6,AD=12,点D在BC的延长线上,且△ACD∽△BAD,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作∠OPQ=45°交x轴于点Q.
(1)求点A和点B的坐标;
(2)比较∠AOP与∠BPQ的大小,说明理由.
(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.
(1)求证:四边形ABEF是正方形;
(2)如果AB=6,AD=8,求tan∠ADP的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com