17£®ÔĶÁÓë¼ÆË㣺ÇëÔĶÁÒÔϲÄÁÏ£¬²¢Íê³ÉÏàÓ¦µÄÈÎÎñ£®
¹ÅÏ£À°µÄ¼¸ºÎѧ¼Òº£Â×ÔÚËûµÄ¡¶¶ÈÁ¿¡·Ò»ÊéÖиø³öÁËÀûÓÃÈý½ÇÐεÄÈý±ßÇóÈý½ÇÐÎÃæ»ýµÄ¡°º£Â×¹«Ê½¡±£ºÈç¹ûÒ»¸öÈý½ÇÐεÄÈý±ß³¤·Ö±ðΪa¡¢b¡¢c£¬Éèp=$\frac{a+b+c}{2}$£¬ÔòÈý½ÇÐεÄÃæ»ýS=$\sqrt{p£¨p-a£©£¨p-b£©£¨p-c£©}$£®
ÎÒ¹úÄÏËÎÖøÃûµÄÊýѧ¼ÒÇØ¾ÅÉØ£¬ÔøÌá³öÀûÓÃÈý½ÇÐεÄÈý±ßÇóÃæ»ýµÄ¡°ÇؾÅÉØ¹«Ê½¡±£¨ÈýбÇó»ýÊõ£©£ºÈç¹ûÒ»¸öÈý½ÇÐεÄÈý±ß³¤·Ö±ðΪa¡¢b¡¢c£¬ÔòÈý½ÇÐεÄÃæ»ýS=$\sqrt{\frac{1}{4}[{a}^{2}{b}^{2}-£¨\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2}£©^{2}]}$£®
£¨1£©ÈôÒ»¸öÈý½ÇÐεÄÈý±ß³¤·Ö±ðÊÇ5£¬6£¬7£¬ÔòÕâ¸öÈý½ÇÐεÄÃæ»ýµÈÓÚ6$\sqrt{6}$£®
£¨2£©ÈôÒ»¸öÈý½ÇÐεÄÈý±ß³¤·Ö±ðÊÇ$\sqrt{5}¡¢\sqrt{6}¡¢\sqrt{7}$£¬ÇóÕâ¸öÈý½ÇÐεÄÃæ»ý£®

·ÖÎö £¨1£©°Ña¡¢b¡¢cµÄ³¤´úÈëÇó³öS2£¬ÔÙ¿ª·½¼ÆËã¼´¿ÉµÃ½â£»
£¨2£©°Ña¡¢b¡¢cµÄ³¤´úÈëÇó³öS2£¬ÔÙ¿ª·½¼ÆËã¼´¿ÉµÃ½â£®

½â´ð ½â£º£¨1£©p=$\frac{a+b+c}{2}$=$\frac{5+6+7}{2}$=9£¬
S=$\sqrt{p£¨p-a£©£¨p-b£©£¨p-c£©}$
=$\sqrt{9¡Á£¨9-5£©¡Á£¨9-6£©¡Á£¨9-7£©}$
=6$\sqrt{6}$£®
´ð£ºÕâ¸öÈý½ÇÐεÄÃæ»ýµÈÓÚ6$\sqrt{6}$£®
£¨2£©S=$\sqrt{\frac{1}{4}[{a}^{2}{b}^{2}-£¨\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2}£©^{2}]}$
=$\sqrt{\frac{1}{4}[{£¨\sqrt{5}£©}^{2}{¡Á£¨\sqrt{6}£©}^{2}-£¨\frac{£¨{\sqrt{5}£©}^{2}+£¨\sqrt{6}£©^{2}-£¨{\sqrt{7}£©}^{2}}{2}£©^{2}]}$
=$\sqrt{\frac{1}{4}[5¡Á6-£¨\frac{5+6-7}{2}£©^{2}]}$
=$\sqrt{\frac{1}{4}£¨30-4£©}$
=$\frac{\sqrt{26}}{2}$£®
´ð£ºÕâ¸öÈý½ÇÐεÄÃæ»ýÊÇ$\frac{\sqrt{26}}{2}$£®
¹Ê´ð°¸Îª£º6$\sqrt{6}$£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Î¸ùʽµÄÓ¦Óã¬ÄѵãÔÚÓÚ¶Ô¸÷ÏîÕûÀíÀûÓÃËãÊõƽ·½¸ùµÄ¶¨Ò弯Ë㣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¼ÆËã»ò»¯¼ò
£¨1£©$\sqrt{27}+\left|1\right.-\sqrt{3}\left.{\;}\right|-{£¨{-1}£©^3}$
£¨2£©$\sqrt{32}$-2$\sqrt{2}$+2$\sqrt{0.5}$+$\sqrt{2}¡Á\sqrt{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÃæËµ·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®1µÄ¾ø¶ÔÖµÊÇ-1B£®1µÄµ¹ÊýÊÇ-1C£®1µÄÏà·´ÊýÊÇ-1D£®1µÄƽ·½¸ùÊÇ-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®x2+x3=x6B£®2x+3y=5xyC£®£¨x3£©2=x6D£®x6¡Âx3=x2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬Ð¡Ã÷°ÑÒ»¸ö±ß³¤Îª10µÄÕý·½ÐÎDEFG¼ôÖ½ÌùÔÚ¡÷ABCֽƬÉÏ£¬ÆäÖÐAB=AC=26£¬BC=20£¬Õý·½ÐεĶ¥µãD£¬G·Ö±ðÔÚ±ßAB¡¢ACÉÏ£¬ÇÒAD=AG£¬µãE¡¢FÔÚ¡÷ABCÄÚ²¿£¬ÔòµãEµ½BCµÄ¾àÀëΪ£¨¡¡¡¡£©
A£®1B£®2C£®$\sqrt{21}$D£®$\sqrt{29}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èçͼ£¬½«Õý·½ÐÎֽƬABCDÑØBE·­ÕÛ£¬Ê¹µãCÂäÔÚµãF´¦£¬Èô¡ÏDEF=40¡ã£¬Ôò¡ÏABFµÄ¶ÈÊýΪ50¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¶ÔÓÚ¶þ´Îº¯Êýy=x2-£¨2k+3£©x+k2+3k+2£¬ÏÂÁбíÊöÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢Ùº¯ÊýͼÏ󿪿ÚÏòÉÏ
¢ÚÎÞÂÛkÈ¡ºÎֵʱ£¬º¯ÊýͼÏó×ܽ»ÓÚyÖáµÄÕý°ëÖá
¢ÛÎÞÂÛkÈ¡ºÎֵʱ£¬º¯ÊýͼÏóÓëxÖáµÄ½»µã¼äµÄ¾àÀëΪ1
¢Üµ±k£¾$-\frac{3}{2}$ʱ£¬Í¼ÏóµÄ¶¥µãÔÚµÚËÄÏóÏÞ£®
A£®¢Ù¢Ú¢Û¢ÜB£®¢Ù¢Û¢ÜC£®¢Ù¢ÛD£®¢Ù¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬¾ØÐÎABCDÖУ¬EÊÇADµÄÖе㣬½«¡÷ABEÑØÖ±ÏßBEÕÛµþºóµÃµ½¡÷GBE£¬ÑÓ³¤BG½»CDÓÚµãF£¬ÈôAB=6£¬BC=4$\sqrt{6}$£¬ÔòFDµÄ³¤Îª4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÒ»×éÊý¾Ý£º1£¬3£¬2£¬6£¬3£®ÏÂÁйØÓÚÕâ×éÊý¾ÝµÄ˵·¨£¬²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®·½²îÊÇ1.8B£®ÖÚÊýÊÇ3C£®ÖÐλÊýÊÇ3D£®Æ½¾ùÊýÊÇ3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸