【题目】如图,在中,,,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.
(1)求证:;
(2)填空:
①若,且点E是的中点,则DF的长为 ;
②取的中点H,当的度数为 时,四边形OBEH为菱形.
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB是⊙O的直径,弦CD与AB交于点E,连接AD,过点A作直线MN,使∠MAC=∠ADC.
(1)求证:直线MN是⊙O的切线.
(2)若sin∠ADC=,AB=8,AE=3,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度,密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.
为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:
速度v(千米/小时) | …… | 5 | 10 | 20 | 32 | 40 | 48 | …… |
流量q(辆/小时) | …… | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | …… |
(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是___________.(只填上正确答案的序号)
①q=90v+100;②q=;③q=2v2+120v.
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?
(3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题.
①市交通运行监控平台显示,当18≤v≤28该路段不会出现交通拥堵现象.试分析当车流密度k在什么范围时,该路段不会出现交通拥堵现象;
②在理想状态下,假设前后两车车头之间的距离d(米)均相等,当d=25米时请求出此时的速度v.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,二次函数(其中,是常数,为正整数)
(1)若经过点求的值.
(2)当,若与轴有公共点时且公共点的横坐标为非零的整数,确定的值;
(3)在(2)的条件下将的图象向下平移个单位,得到函数图象,求的解析式;
(4)在(3)的条件下,将的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请结合新的图象解答问题,若直线与有两个公共点时,请直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果连锁店销售某种热带水果,其进价为20元/千克.销售一段时间后发现:该水果的日销量(千克)与售价(元/千克)的函数关系如图所示:
(1)求关于的函数解析式;
(2)当售价为多少元/千克时,当日销售利润最大,最大利润为多少元?
(3)由于某种原因,该水果进价提高了元/千克(),物价局规定该水果的售价不得超过40元/千克,该连锁店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是元,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3cm,BC=4cm,P、Q两点同时从点C出发,点P沿从的方向运动,速度为2cm/秒;点Q沿从的方向运动,速度为1cm/秒.当运动时间为t秒﹙0≤t≤3.5﹚时,设△PCQ的面积为y(cm2)(当P、Q两点未开始运动时,△PCQ的面积为0).则y(cm2)和t﹙秒﹚的函数关系的图象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为弧BE的中点,连接AD交OE于点F,若AC=FC
(Ⅰ)求证:AC是⊙O的切线;
(Ⅱ)若BF=5,DF=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表和频数分布直方图.
分数段(分数为x分) | 频数 | 百分比 |
60≤x<70 | 8 | 20% |
70≤x<80 | a | 30% |
80≤x<90 | 16 | b% |
90≤x<100 | 4 | 10% |
请根据图表提供的信息,解答下列问题:
(1)表中的a= ,b= ;请补全频数分布直方图;
(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是 ;
(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学. 学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)
(1)请直接写出y与x以及z与x之间的函数关系式;
(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?
(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com