【题目】(1)计算:6cos45°+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017;
(2)先化简,再求值:(﹣a+1)÷﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.
【答案】(1)5;(2)﹣1﹣a,﹣1.
【解析】
(1)由题意根据特殊角的三角函数值、零指数幂、绝对值、有理数的乘方可以解答本题;
(2)由题意根据分式的加减法和除法可以化简题目中的式子,然后从﹣1,0,2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.
解:(1)6cos45°+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017
=6×+1+5﹣3+[4×(﹣0.25)]2017
=3+1+5﹣3+(﹣1)2017
=3+1+5﹣3+(﹣1)
=5;
(2)(﹣a+1)÷﹣a
=﹣a
=﹣a
=﹣a
=﹣a
=﹣a
=﹣a
=﹣1﹣a,
∵当a=﹣1,2时,原分式无意义,
∴a=0,
当a=0时,原式=﹣1﹣0=﹣1.
科目:初中数学 来源: 题型:
【题目】小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,如图为二人测试成绩折线统计图,下列说法合理的是( )
①小亮测试成绩的平均数比小明的高;②小亮测试成绩比小明的稳定;③小亮测试成绩的中位数比小明的高;④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理.
A. ①③B. ①④C. ②③D. ②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在中,为边上一点,过点作交于点,连接,为的中点,连接.
(观察猜想)
(1)①的数量关系是___________
②的数量关系是______________
(类比探究)
(2)将图①中绕点逆时针旋转,如图②所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(拓展迁移)
(3)将绕点旋转任意角度,若,请直接写出点在同一直线上时的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A(0,1)和点B(3,﹣2),交x轴于点C,顶点为点F,点D是该抛物线上一点.
(1)求抛物线的函数表达式;
(2)如图1,若点D在直线AB上方的抛物线上,求△DAB的面积最大时点D的坐标;
(3)如图2,若点D在对称轴左侧的抛物线上,且点E(1,t)是射线CF上一点,当以C、B、D为顶点的三角形与△CAE相似时,求所有满足条件的t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在同一平面直角坐标系中有函数y1=ax2﹣2ax+b,y2=﹣ax+b,其中ab≠0.
(1)求证:函数y2的图象经过函数y1的图象的顶点;
(2)设函数y2的图象与x轴的交点为M,若点M关于y轴的对称点M'在函数y1图象上,求a,b满足的关系式;
(3)当﹣1<x<1时,比较y1与y2的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的顶点坐标为且经过点动直线的解析式为.
(1)求抛物线的解析式;
(2)将抛物线向上平移一个单位得到新的抛物线,过点的直线交抛物线于两点(点位于点的左边),动直线过点,与抛物线的另外一个交点为点求证:直线恒过一个定点;
(3)已知点,且点在动直线上,若是以为顶角的等腰三角形,这样的等腰三角形有且只存在一个,请求出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.
(1)求二次函数的解析式;
(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;
(3)点M在抛物线上,且△AOM的面积与△AOC的面积相等,求出点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com