精英家教网 > 初中数学 > 题目详情
如图,相交于P(3,3)的互相垂直的两直线a、b中直线a与x轴正半轴交于点A,直线b与y轴正半轴交于点B.
(1)如果OB=1,求出符合上述条件的直线b与直线a的一次函数式;
(2)对OB不同的取值,线段PA与PB相等吗?为什么?四边形OAPB的面积是否为定值?
考点:一次函数综合题
专题:
分析:(1)利用待定系数法,设直线a、b的解析式为y=kx+m和y=cx+n,由题意知m=OB=1,再把点P的坐标代入可求得b的解析式,再由两直线互相垂直和过点P求得直线a的解析式;
(2)由题意可知A、P、B、O四点共圆,所以∠POB=∠PAB=45°,可知PA=PB;过点P分别作PX⊥x轴,PY⊥y轴,垂足分别为X和Y,则可证得Rt△AXP≌△BYP,故四边形OAPB的面积=矩形OXPY的面积,可知为定值.
解答:解:(1)由OB=1,
设直线b的解析式为y=kx+1,再把P点坐标代入可得3=3k+1,
解得k=
2
3

所以直线b的解析式为:y=
2
3
x+1,
设直线a的解析式为y=cx+m,由题意直线a和直线b互相垂直,所以可知ck=-1,
所以c=-
3
2

再把点P的坐标代入可得3=-
3
2
×3+m,
解得m=
15
2

所以直线a的解析式为:y=-
3
2
x+
15
2

(2)PA=PB,理由如下:
∵∠O+∠BAP=180°,
∴O、A、P、B四点共圆,
∴∠BAP=∠POB=45°,
∴PA=PB;
四边形OAPB的面积为定值,理由如下:

如图,过点P分别作PX⊥x轴,PY⊥y轴,垂足分别为X和Y,
则四边形OXPY为矩形,其面积为9,
∴∠YPB+∠BPX=∠XPA+∠BPX=90°,
∴∠YPB=∠XPA,
在△YBP和△XAP中,
∠PYB=∠PXA=90°
∠YPB=∠XPA
PB=PA

∴△YBP≌△XAP(AAS),
∴S△YBP=S△XAP
∴S四边形OAPB=S四边形OXPB+S△XAP=S四边形OXPB+S△YBP=S矩形OXPY=9,
∴四边形OAPB的面积为定值.
点评:本题主要考查待定系数法求一次函数的解析式,找出点的坐标是解题的关键,在解决有关面积问题时注意“割”和“补”两种方法的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AB2的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)单项式-3xy2z的系数为
 
,次数为
 

(2)多项式-xy2+
x
2
-2xy的次数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

一个数是8,另一个数比8的相反数小2,这两个数的和是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

两个有理数的和是正数,积是负数,则这两个有理数(  )
A、都是正数
B、都是负数
C、一正一负,且正数的绝对值较大
D、一正一负,且负数的绝对值较大

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,求阴影部分的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果x是绝对值最小的有理数,y是最大的负整数,则x2013+y2014的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠B=90°,∠A=38°,AC的垂直平分线MN与AB交于D点,则∠BCD的度数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知A、B两地相距20千米,甲、乙两人同时从A地步行出发去B地,1小时后,甲走在乙的前面1千米,甲因故在中途休息了20分钟,结果乙比甲迟40分钟到达B地,问甲、乙两人的速度各是多少?

查看答案和解析>>

同步练习册答案