精英家教网 > 初中数学 > 题目详情

【题目】如图,在数轴上点A表示的数为a,点B表示的数为b,且a,b满足|a+2|+(3a+b)2=0,O为原点.

(1)则a= ,b=

(2)若动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,

①当PO=2PB时,求点P的运动时间t;

②当点P运动到线段OB上时,分别取AP和OB的中点E、F,则的值为

(3)有一动点Q从原点O出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点Q所对应的有理数.

【答案】(1)a=﹣2,b=6;(2)①点P的运动时间t为6或14秒;②2;(3)点Q所对应的有理数的值为﹣1008.

【解析】

试题分析:(1)根据非负数的性质即可求出a、b的值;

(2)①先表示出运动t秒后P点对应的数为﹣2+t,再根据两点间的距离公式得出PO=|﹣2+t|,PB=|﹣2+t﹣6|=|t﹣8|,利用PO=2PB建立方程,求解即可;

②根据中点坐标公式分别表示出点E表示的数,点F表示的数,再计算即可;

(3)根据题意得到点P每一次运动后所在的位置,然后由有理数的加法进行计算即可.

解:(1)|a+2|+(3a+b)2=0,

a+2=0,3a+b=0,

a=﹣2,b=6;

(2)①若动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,

运动t秒后P点对应的数为﹣2+t,

点A表示的数为﹣2,点B表示的数为6,

PO=|﹣2+t|,PB=|﹣2+t﹣6|=|t﹣8|,

当PO=2PB时,有|﹣2+t|=2|t﹣8|,

解得t=6或14.

答:点P的运动时间t为6或14秒;

②当点P运动到线段OB上时,

AP中点E表示的数是=,OB的中点F表示的数是3,

所以EF=3﹣=

==2;

(3)依题意得:﹣1+2﹣3+4﹣5+6﹣7+…+2014﹣2015

=(﹣1+2)+(﹣3+4)+(﹣5+6))+…+(﹣2013+2014)﹣2015

=1007﹣2015

=﹣1008.

答:点Q所对应的有理数的值为﹣1008.

故答案为﹣2,6;2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,点E是BC的中点,F是AB延长线上一点且FB=1.

(1)求经过点O,A,E三点的抛物线解析式;

(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;

(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.

1)求BT的长(不考虑其他因素).

(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.

(参考数据:sin22°tan22°sin31°tan31°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD上,⊙O与BC相切于点E,且∠OBA=∠OBC.

(1)求证:AB为⊙O的切线;

(2)求⊙O的半径;

(3)求tan∠BAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对某一个函数给出如下定义:若存在实数M0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1

1)分别判断函数 y=x0)和y=x+1﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;

2)若函数y=﹣x+1a≤x≤bba)的边界值是2,且这个函数的最大值也是2,求b的取值范围;

3)将函数 y=x2﹣1≤x≤mm≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度,

(1)在确定调查方式时,团委设计了以下三种方案:

方案一:调查七年级部分女生;

方案二:调查七年级部分男生;

方案三:到七年级每个班去随机调查一定数量的学生

请问其中最具有代表性的一个方案是   

(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将其补充完整;

(3)请你估计该校七年级约有多少名学生比较了解“低碳”知识.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线分别交x轴、y轴于AB两点,抛物线经过AB两点,点C是抛物线与x轴的另一个交点(与A点不重合).

1)求抛物线的解析式;

2)求△ABC的面积;

3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(  )

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在△ABC中,∠A90°,ABACDBC的中点,EF分别是ABAC上的点,且BEAF

1)请你判断△DEF形状,并说明理由;

2)若BE2cmCF4cm,求EF的长.

查看答案和解析>>

同步练习册答案