精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上.则细线的另一端所在位置的点的坐标是

【答案】(1,﹣2)
【解析】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),

∴AB=CD=2,AD=BC=3,且四边形ABCD为矩形,

∴矩形ABCD的周长C矩形ABCD=2(AB+BC)=10.

∵2017=201×10+7,AB+BC+CD=7,

∴细线的另一端落在点D上,即(1,﹣2).

故答案为(1,﹣2).

根据点A、B、C、D的坐标可得出AB、BC的长度以及四边形ABCD为矩形,进而可求出矩形ABCD的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置,此题得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点A-1y1)、B-2y2)、C3y3)在抛物线y=-x2-2x+c上,则y1y2y3的大小关系是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题提出】
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 , 可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 , 则△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小敏为了解市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).

请你根据图中提供的信息,解答下列问题:

(1)计算被抽取的天数;

(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;

(3)请估计该市这一年(365天)达到优和良的总天数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“囧”像一个人脸郁闷的神情.如图,边长为a的正方形纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的两个小直角三角形的两直角边长分别为x、y,剪去的小长方形长和宽也分别为x,y.

(1)用式子表示“囧”的面积S;(用含a、x、y的式子表示)
(2)当a=7,x=π,y=2时,求S(π取3.14)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中,正确的是(  )

A. 过直线外一点可以画无数条直线与这条直线垂直

B. 过直线外一定点不可以画这条直线的垂线

C. 过直线外一点可以画这条直线的一条垂线

D. 如果两条直线不相交,那么这两条直线有可能互相垂直

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,

(1)写出图中所有的全等三角形;

(2)求证:DE∥BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E、F分别是AB、DC边上的点,且AE=CF,

(1)求证:△ADE≌△CBF

(2)若∠DEB=90°,求证:四边形DEBF是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是( )
A.7cm
B.3cm
C.7cm或3cm
D.5cm

查看答案和解析>>

同步练习册答案