【题目】如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是( )
A.两点确定一条直线
B.两点之间线段最短
C.两点之间直线最短
D.垂线段最短
【答案】B
【解析】A、图中AB属于线段关系,A不符合题意;
B、图中AB属于线段关系,且关于线段之间的距离从弯曲的改为直的,B符合题意;
C、图中AB属于线段关系,C不符合题意;
D、垂线段最短是指点到直线的距离,图中是点与点之间的距离,D不符合题意。
所以答案是B。
【考点精析】本题主要考查了线段的基本性质和两点间的距离的相关知识点,需要掌握线段公理:所有连接两点的线中,线段最短.也可简单说成:两点之间线段最短;连接两点的线段的长度,叫做这两点的距离;线段的大小关系和它们的长度的大小关系是一致的;同轴两点求距离,大减小数就为之.与轴等距两个点,间距求法亦如此.平面任意两个点,横纵标差先求值.差方相加开平方,距离公式要牢记才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为 cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】昆明在修建地铁3号线的过程中,要打通隧道3600米,为加快城市建设,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成了任务.问原计划每天打通隧道多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在证明“△ABC内角和等于180°”时,延长BC至D,过点C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,这个证明方法体现的数学思想是( )
A.数形结合
B.特殊到一般
C.一般到特殊
D.转化
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线(a≠0)交x轴与A,B两点(点A在点B左侧),将直尺WXYZ与x轴负方向成45°放置,边WZ经过抛物线上的点C(4,m),与抛物线的另一交点为点D,直尺被x轴截得的线段EF=2,且△CEF的面积为6.
(1)求该抛物线的解析式;
(2)探究:在直线AC上方的抛物线上是否存在一点P,使得△ACP的面积最大?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由.
(3)将直尺以每秒2个单位的速度沿x轴向左平移,设平移的时间为t秒,平移后的直尺为W′X′Y′Z′,其中边X′Y′所在的直线与x轴交于点M,与抛物线的其中一个交点为点N,请直接写出当t为何值时,可使得以C、D、M、N为顶点的四边形是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点A在y轴正半轴上,点B的坐标为(0,﹣3),反比例函数y=﹣的图象经过点C.
(1)求点C的坐标;
(2)若点P是反比例函数图象上的一点且S△PAD=S正方形ABCD;求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.
(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);
(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题 某商店用2000元购进一批小学生书包,出售后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果购买第二批书包用了6600元.
(1)请求出第一批每只书包的进价;
(2)该商店第一批和第二批分别购进了多少只书包;
(3)若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】要反映我区12月11日至17日这一周每天的最高气温的变化趋势,宜采用( )
A. 条形统计图 B. 折线统计图
C. 扇形统计图 D. 频数分布统计图
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com