【题目】如图,在正方形ABCD中,点A在y轴正半轴上,点B的坐标为(0,﹣3),反比例函数y=﹣的图象经过点C.
(1)求点C的坐标;
(2)若点P是反比例函数图象上的一点且S△PAD=S正方形ABCD;求点P的坐标.
【答案】解:(1)∵点B的坐标为(0,﹣3),
∴点C的纵坐标为﹣3,
把y=﹣3代入y=﹣得,﹣3=﹣
解得x=5,
∴点C的坐标为(5,﹣3);
(2)∵C(5,﹣3),
∴BC=5,
∵四边形ABCD是正方形,
∴AD=5,
设点P到AD的距离为h.
∵S△PAD=S正方形ABCD ,
∴×5×h=52 ,
解得h=10,
①当点P在第二象限时,yP=h+2=12,
此时,xP==﹣,
∴点P的坐标为(﹣,12),
②当点P在第四象限时,yP=﹣(h﹣2)=﹣8,
此时,xP==,
∴点P的坐标为(,﹣8).
综上所述,点P的坐标为(﹣,12)或(,﹣8).
【解析】(1)先由点B的坐标为(0,﹣3)得到C的纵坐标为﹣3,然后代入反比例函数的解析式求得横坐标为5,即可求得点C的坐标为(5,﹣3);
(2)设点P到AD的距离为h,利用△PAD的面积恰好等于正方形ABCD的面积得到h=10,再分类讨论:当点P在第二象限时,则P点的纵坐标yP=h+2=12,可求的P点的横坐标,得到点P的坐标为(﹣ , 12);②当点P在第四象限时,P点的纵坐标为yP=﹣(h﹣2)=﹣8,再计算出P点的横坐标.于是得到点P的坐标为( , ﹣8).
【考点精析】利用比例系数k的几何意义对题目进行判断即可得到答案,需要熟知几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积.
科目:初中数学 来源: 题型:
【题目】如图,把△ABC向上平移4个的那位长度,再向右平移3个单位长度,得到△A′B′C′.
(1)在图中画出△A′B′C′;
(2)连接A′A、C′C,求四边形A′AC′C的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是( )
A.两点确定一条直线
B.两点之间线段最短
C.两点之间直线最短
D.垂线段最短
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,∠C=90°,AC<BC,D为BC上一点,且到A、B两点的距离相等.
(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);
(2)连结AD,若∠B=32°,求∠CAD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按一定规律排列的一列数:21 , 22 , 23 , 25 , 28 , 213 , …,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上有A,B,C三个点,分别表示有理数﹣24,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.
(1)用含t的代数式表示P到点A和点C的距离:
PA= , PC=;
(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P,Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com