精英家教网 > 初中数学 > 题目详情

【题目】某玩具厂有4个车间,某周是质量检查周,现每个车间都原有a(a>0)个成品,且每个车间每天都生产b(b>0)个成品,质量科派出若干名检验员周一、周二检验其中两个车间原有的和这两天生产的所有成品,然后,周三到周五检验另外两个车间原有的和本周生产的所有成品,假定每名检验员每天检验的成品数相同.

(1)这若干名检验员1天共检验多少个成品?(用含a、b的代数式表示)

(2)若一名检验员1天能检验b个成品,则质量科至少要派出多少名检验员?

【答案】(1) a+2b;(2) 至少要派8名检验员.

【解析】试题分析:(1)求得两个车间星期一和星期二两天共生产的数量,再加上原有的2a个,得质检员两天共检查的数量,除以2即1天的检查数量.或求得另外两个车间星期三至星期五三天共生产的数量,再加上原有的2a+4b个,得质检员三天共检查的数量,除以3即1天的检查数量.或求得星期一至星期五质检员总共检查的数量再除以5即1天的检查数量(2)根据(1)中前两天求得的1天检查的数量等于后三天求得的1天检查的数量,便可求得;(3)设质检科要派出x名检验员则x名质检员1天最多能检查bx个,得a+2b≤bx,将a=4b代入,便可求出.

试题解析:(1)这若干名检验员1天能检验的个数为(2a+4b)÷2=a+2b(2a+4b+6b)÷3=(4a+4b+10b)÷5=.

(2)根据题意a+2b=a=4b.

(3)设质检科要派出x名检验员

根据题意a+2bbx

a=4b代入,得4b+2bbx,解得x≥7.5.

x为正整数,则x最小为8.

答:质检科至少要派出8名检验员.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠DAB=ABC=90,ADBC,AB=BC,EAB的中点,CEBD.

(1)求证:BE=AD

(2)求证:AC是线段ED的垂直平分线;

(3)△DBC是等腰三角形吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】xm-32yn+1=5是二元一次方程,则m=_______n=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC经过一次平移后得到A′B′C′,图中标出了点B的对应点B′.

(1)在给定方格纸中画出平移后的A′B′C′;

利用网格点和三角板画图或计算:

(2)画出AB边上的中线CD;

(3)画出BC边上的高线AE;

(4)A′B′C′的面积为______.

【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析;(4)8.

【解析】:(1)如图所示: 即为所求;

(2)如图所示:CD就是所求的中线;

(3)如图所示:AE即为BC边上的高;

(4).

的面积为8.

因此,本题正确答案是:8.

型】解答
束】
24

【题目】如图,⊿ABC中,∠A=40°ACB=104°BDAC边上的高,BE是⊿ABC的角平分线,求∠EBD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1) 如图1,MA1NA2,则∠A1+A2=_________度.

如图2,MA1NA3,则∠A1+A2+A3=_________ 度.

如图3,MA1NA4,则∠A1+A2+A3+A4=_________度.

如图4,MA1NA5,则∠A1+A2+A3+A4+A5=_________度.

如图5,MA1NAn,则∠A1+A2+A3+…+An=_________ 度.

(2) 如图,已知AB∥CD,∠ABE∠CDE的平分线相交于F,∠E=80°,求∠BFD的度数.

【答案】(1) 180; 360; 540;720;180(n-1);(2)140°.

【解析】试题分析:(1)首先过各点作MA 1 的平行线,由MA 1 ∥NA 2 可得各线平行,根据两直线平行,同旁内角互补,即可求得答案

(2)(1)中的规律可得∠ABE+∠E+∠CDE=360°,所以∠ABE+∠CDE=360°-80°=280°,又因为BF、DF平分∠ABE和∠CDE,所以∠FBE+∠FDE=140°,又因为四边形的内角和为360°,进而可得答案.

试题解析:(1)如图1,

∵MA 1 ∥NA 2

∴∠A 1 +∠A 2 =180°.

如图2,过点A 2 A 2 C 1 ∥A 1 M,

∵MA 1 ∥NA 3

∴A 2 C 1 ∥A 1 M∥NA 3

∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 3 =180°,

∴∠A 1 +∠A 2 +∠A 3 =360°.

如图3,过点A 2 A 2 C 1 ∥A 1 M,过点A 3 A 3 C 2 ∥A 1 M,

∵MA 1 ∥NA 3

∴A 2 C 1 ∥A 3 C 2 ∥A 1 M∥NA 3

∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 2 A 3 C 2 =180°,∠C 2 A 3 A 4 +∠A 4 =180°,

∴∠A 1 +∠A 2 +∠A 3 +∠A 4 =540°.

如图4,过点A 2 A 2 C 1 ∥A 1 M,过点A 3 A 3 C 2 ∥A 1 M,

∵MA 1 ∥NA 3

∴A 2 C 1 ∥A 3 C 2 ∥A 1 M∥NA 3

∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 2 A 3 C 2 =180°,∠C 2 A 3 A 4 +∠A 3 A 4 C 3 =180°,∠C 3 A 4 A 5 +∠A 5 =180°,

∴∠A 1 +∠A 2 +∠A 3 +∠A 4 +∠A 5 =720°;

从上述结论中你发现了规律:如图5,MA 1 ∥NA n ,则∠A 1 +∠A 2 +∠A 3 +…+∠A n =180(n-1)度,

故答案为:180,360,540,720,180(n-1);

(2)由(1)可得∠ABE+∠E+∠CDE=360°,

∵∠E=80°,

∴∠ABE+∠CDE=360°-80°=280°,

又∵BF、DF平分∠ABE和∠CDE,

∴∠FBE+∠FDE=140°,

∵∠FBE+∠E+∠FDE+∠BFD=360°,

∴∠BFD=360°-80°-140°=140°.

【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补四边形的内角和是360°,解题的关键是,(1)小题正确添加辅助线,发现规律:MA 1 ∥NA n ,则∠A 1 +∠A 2 +∠A 3 +…+∠A n =180(n-1)度;(2)小题能应用(1)中发现的规律.

型】解答
束】
28

【题目】已知如图1,线段ABCD相交于点O,连结ACBD,我们把形如图1的图形称之为“8字形,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥聪明才智,解决以下问题:

(1)在图1中,请写出∠ABCD之间的数量关系,并说明理由;

(2)仔细观察,在图2“8字形的个数有

(3)在图2中,若∠B76°C80°CAB和∠BDC的平分线APDP相交于点P,并且与CDAB分别相交于MN利用(1)的结论,试求∠P的度数;

(4)在图3中,如果∠B和∠C为任意角,并且APDP分别是∠CAB和∠BDC的三等分线,即∠PAOCAO BDPBOD,那么∠P与∠CB之间存在的数量关系是 (直接写出结论即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国西南五省市的部分地区发生严重旱灾为鼓励节约用水某市自来水公司采取分段收费标准右图反映的是每月收取水费y与用水量x之间的函数关系

1)小明家五月份用水8应交水费______

2)按上述分段收费标准小明家三、四月份分别交水费26元和18问四月份比三月份节约用水多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于ab的多项式3(a22abb2)(a2+mab+2b2)中不含有ab项,则m=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于AB两点,B点坐标为(30).与y轴交于点C03).

1)求抛物线的解析式;

2)点Px轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;

3)点D为抛物线对称轴上一点.

①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;

②若△BCD是锐角三角形,求点D的纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图∠AOB的平分线上一点CCD∥OBOA于点DE是线段OC的中点过点E作直线分别交射线CDOB于点MN探究线段ODONDM之间的数量关系并证明你的结论

查看答案和解析>>

同步练习册答案