【题目】如图,抛物线与x轴交于A,B两点,B点坐标为(3,0).与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;
(3)点D为抛物线对称轴上一点.
①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;
②若△BCD是锐角三角形,求点D的纵坐标的取值范围.
【答案】(1);(2);(3)①D点坐标为(2,5)或(2,﹣1);②点D的纵坐标的取值范围为<y<5或﹣1<y<.
【解析】试题分析:(1)利用待定系数法求抛物线的解析式;
(2)易得BC的解析式为y=﹣x+3,先证明△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图1,则△EPG为等腰直角三角形,PE=PG,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,所以PE+EF=2PE+PF= ,然后利用二次函数的性质解决问题;
(3)①如图2,抛物线的对称轴为直线x=2,设D(2,y),利用两点间的距离公式得到BC2=18,DC2=4+(y﹣3)2,BD2=1+y2,讨论:当△BCD是以BC为直角边,BD为斜边的直角三角形时,18+4+(y﹣3)2=1+y2;当△BCD是以BC为直角边,CD为斜边的直角三角形时,4+(y﹣3)2=1+y2+18,分别解方程求出t即可得到对应的D点坐标;
②由于△BCD是以BC为斜边的直角三角形有4+(y﹣3)2+1+y2=18,解出y的值,得到此时D点的坐标,然后结合图形可确定△BCD是锐角三角形时点D的纵坐标的取值范围.
试题解析:解:(1)把B(3,0),C(0,3)代入得: ,解得: ,∴抛物线的解析式为;
(2)易得BC的解析式为y=﹣x+3,∵直线y=x﹣m与直线y=x平行,∴直线y=﹣x+3与直线y=x﹣m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图1,△EPG为等腰直角三角形,PE=PG,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=PH=t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=PG= ,∴PE+EF=PE+PE+PF=2PE+PF= = =,当t=2时,PE+EF的最大值为;
(3)①如图2,抛物线的对称轴为直线x==2,设D(2,y),则BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得y=5,此时D点坐标为(2,5);
当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得y=﹣1,此时D点坐标为(2,﹣1);
综上所述:D点坐标为(2,5)或(2,﹣1).
②当△BCD是以BC为斜边的直角三角形时,DC2+DB2=BC2,即4+(y﹣3)2+1+y2=18,解得y1=,y2=,此时D点坐标为(2, )或(2, ),所以△BCD是锐角三角形,点D的纵坐标的取值范围为<y<5或﹣1<y<.
科目:初中数学 来源: 题型:
【题目】某玩具厂有4个车间,某周是质量检查周,现每个车间都原有a(a>0)个成品,且每个车间每天都生产b(b>0)个成品,质量科派出若干名检验员周一、周二检验其中两个车间原有的和这两天生产的所有成品,然后,周三到周五检验另外两个车间原有的和本周生产的所有成品,假定每名检验员每天检验的成品数相同.
(1)这若干名检验员1天共检验多少个成品?(用含a、b的代数式表示)
(2)若一名检验员1天能检验b个成品,则质量科至少要派出多少名检验员?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).
(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?
(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据官方数据统计,70周年国庆阅兵网上总观看人次突破513000000,最高同时在线人数突破600万.将513000000用科学记数法表示应为( )
A.5.13×108B.5.13×109C.513×106D.0.513×109
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com