精英家教网 > 初中数学 > 题目详情

如图:在△ABC中,AB=AC,求证:∠B=∠C.


【考点】全等三角形的判定与性质;等腰三角形的性质.

【专题】证明题.

【分析】作中线AD,根据三角形全等的判定定理证明△ABD≌△ACD,根据全等三角形的性质定理证明结论.

【解答】证明:作中线AD,

在△ABD和△ACD中,

∴△ABD≌△ACD,

∴∠B=∠C.

【点评】本题考查的是三角形全等的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.

(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;

(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短,这个最短长度的平方值是__________

查看答案和解析>>

科目:初中数学 来源: 题型:


两城镇A、B与两条公路ME、MF位置如图所示,现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME、MF的距离也必须相等,且在∠FME的内部,那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)

两城镇A、B与两条公路ME、MF位置如图所示,现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME、MF的距离也必须相等,且在∠FME的内部,那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:


勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=3,AC=4,点D、E、F、G、H、I 都在长方形KLMJ的边上,则长方形KLMJ的面积为(     )

A.90     B.100   C.110   D.121

查看答案和解析>>

科目:初中数学 来源: 题型:


在等边△ABC中,AB=2cm,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE+DF=__________ cm.

查看答案和解析>>

科目:初中数学 来源: 题型:


材料阅读:

在小学,我们了解到正方形的每个角都是90°,每条边都相等;本学期,我们通过折纸得到定理:直角三角形的斜边上的中线等于斜边的一半;同时探讨得知,在直角三角形中,30°的角所对的直角边是斜边的一半.

(1)如图1,在等边三角形△ABC内有一点P,且PA=2,PB=,PC=1.求∠BPC的度数和等边△ABC的边长.

聪聪同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2).

连接PP′.根据聪聪同学的思路,可以证明△BPP′为等边三角形,又可以证明△ABP′≌△CBP,所以AP′=PC=1,根据勾股定理逆定理可证出△APP′为直角三角形,故此∠BPC=__________°;同时,可以说明∠BPA=90°,在Rt△APB中,利用勾股定理,可以求出等边△ABC的边AB=__________

(2)请你参考聪聪同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC的度数和正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:


小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是(     )

A.  B.   C.  D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图所示,图中不是轴对称图形的是(     )

A.      B.      C.      D.

查看答案和解析>>

科目:初中数学 来源: 题型:


等腰三角形一边长为3cm,周长7cm,则腰长是__________

查看答案和解析>>

同步练习册答案