精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2

(1)当t= _________ s时,点P与点Q重合;

(2)当t= _________ s时,点D在QF上;

(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.


(1)1     (2)      (3)

【解析】

试题分析:(1)当点P与点Q重合时,AP=BQ=t,且AP+BQ=AB=2,

∴t+t=2,解得t=1s,

故填空答案:1.

(3)当P、Q重合时,由(1)知,此时t=1;

当D点在BC上时,如答图2所示,此时AP=BQ=t,BP=t,求得t=s,进一步分析可知此时点E与点F重合;

当点P到达B点时,此时t=2.

因此当P点在Q,B两点之间(不包括Q,B两点)时,其运动过程可分析如下:

①当1<t≤时,如答图3所示,此时重合部分为梯形PDGQ.

此时AP=BQ=t,∴AQ=2﹣t,PQ=AP﹣AQ=2t﹣2;

易知△ABC∽△AQF,可得AF=2AQ,EF=2EG.

∴EF=AF﹣AE=2(2﹣t)﹣t=4﹣3t,EG=EF=2﹣t,

∴DG=DE﹣EG=t﹣(2﹣t)=t﹣2.

S=S梯形PDGQ=(PQ+DG)•PD=[(2t﹣2)+(t﹣2)]•t=t2﹣2t;

综上所述,当点P在Q,B两点之间(不包括Q,B两点)时,S与t之间的函数关系式为:

S=

考点:相似形综合题;勾股定理;正方形的性质;相似三角形的判定与性质.

点评:本题是运动型综合题,涉及到动点与动线问题.第(1)(2)问均涉及动点问题,列方程即可求出t的值;第(3)问涉及动线问题,是本题难点所在,首先要正确分析动线运动过程,然后再正确计算其对应的面积S.本题难度较大,需要同学们具备良好的空间想象能力和较强的逻辑推理能力.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,已知△ABC中,AB=,AC=,BC=6,点M在AB边上,且AM=BM,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长。

查看答案和解析>>

科目:初中数学 来源: 题型:


已知抛物线的顶点在坐标轴上.

(1)求的值;

(2)时,抛物线向下平移个单位后与抛物线关于轴对称,且过点,求的函数关系式;

(3)时,抛物线的顶点为,且过点.问在直线 上是否存在一点使得△的周长最小,如果存在,求出点的坐标, 如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,在Rt△ABC中,∠C=90°,∠A=45°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为      

查看答案和解析>>

科目:初中数学 来源: 题型:


在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(0<m<2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.

(1)写出A、C两点的坐标;

(2)当0<m<1时,若△PAQ是以P为顶点的倍边三角形(注:若△HNK满足HN=2HK,则称△HNK为以H为顶点的倍边三角形),求出m的值;

(3)当1<m<2时,是否存在实数m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代数式表示);若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,)两点。

(1)求抛物线的解析式;

(2)将抛物线向下平移m个单位长度后,得到的抛物线与直线OB只有两个公共点D,求m的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).

(1)求点B,C的坐标;

(2)判断△CDB的形状并说明理由;

(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).

(1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).

(2)当点N落在AB边上时,求t的值.

(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm²),求S与t的函数关系式.

(4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,反比例函数在第一象限内的图象经过点A,与BC交于点F,OB=,BF=BC。过点F作EF∥OB,交OA于点,点P为直线EF上的一个动点,连接PA,PO。若以P、O、A为顶点的三角形是直角三角形,请求出所有点P的坐标。

查看答案和解析>>

同步练习册答案