精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知By轴上的动点,以AB为边构造,使点Cx轴上,BC的中点,则PM的最小值为______

【答案】

【解析】

如图,作AHy轴于HCEAHE.则四边形CEHO是矩形,OH=CE=4,由△AHB∽△CEA,得,推出,推出AE=2BH,设BH=xAE=2x,推出B04x),C2+2x0),由BM=CM,推出M1+x),可得PM,由此即可解决问题.

如图,作AHy轴于HCEAHE.则四边形CEHO是矩形,OH=CE=4

∵∠BAC=AHB=AEC=90°,∴∠ABH+HAB=90°,∠HAB+EAC=90°,∴∠ABH=EAC,∴△AHB∽△CEA,∴,∴,∴AE=2BH,设BH=xAE=2x,∴OC=HE=2+2xOB=4x,∴B04x),C2+2x0).

BM=CM,∴M1+x).

P10),∴PM,∴x时,PM有最小值,最小值为

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=﹣x+4的图象与反比例函数y2的图象交于A23),B6n)两点

1)观察图象当y1y2时,x的取值范围是   

2)求反比例函数的解析式及B点坐标;

3)求△OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为弓形AB的弦,AB2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图 1,在ABC 中,ACB90°BCAC,点 D AB 上,DEAB BC E,点 F AE 的中点

1 写出线段 FD 与线段 FC 的关系并证明;

2 如图 2,将BDE 绕点 B 逆时针旋转αα90°),其它条件不变,线段 FD 与线段 FC 的关系是否变化,写出你的结论并证明;

3 BDE 绕点 B 逆时针旋转一周,如果 BC4BE2,直接写出线段 BF 的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得BDA=45°.已知斜坡CD的坡度为i=1:,求旗杆AB的高度(1.7,结果精确到个位).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绿水青山就是金山银山,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:

村庄

清理养鱼网箱人数/

清理捕鱼网箱人数/

总支出/

A

15

9

57000

B

10

16

68000

(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;

(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,ACB=100°,AC=AE,BC=BD,则∠DCE的度数为

A. 20° B. 25° C. 30° D. 40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线x轴相交于AB两点,点P是抛物线上一点,且

求该抛物线的表达式;

设点为抛物线上的一个动点,当点M在曲线BA之间含端点移动时,求的最大值及取得最大值时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数yk1xb的图象与反比例函数y (x<0)的图象相交于点A(-1,2)、点B(-4,n).

(1)求此一次函数和反比例函数的表达式;

(2)AOB的面积;

(3)x轴上存在一点P,使PAB的周长最小,求点P的坐标.

查看答案和解析>>

同步练习册答案