精英家教网 > 初中数学 > 题目详情

【题目】操作体验

(1)如图1,已知△ABC,请画出△ABC的中线AD,并判断△ABD与△ACD的面积大小关系.

2)如图2,在平面直角坐标系中,△ABC的边BC在x轴上,已知点A(2,4),B(–1,0),C(3,0),试确定过点A的一条直线l,平分△ABC的面积,请写出直线l的表达式.

综合运用

(3)如图3,在平面直角坐标系中,如果A(1,4),B(3,2),那么在直线y=4x+20上是否存在一点C,使直线OC恰好平分四边形OACB的面积?若存在,请计算点C的坐标;若不存在,请说明理由.

【答案】(1)SABD=SACD; (2)y=4x–4; (3)(

【解析】

(1)如图1,过A于点

AD边上的中线,

(2)如图2,设BC的中点为F,

∵直线平分的面积,∴由(1)可知直线过点F

设直线的表达式为

AF的坐标代入可得 ,解得

∴直线的表达式为

(3)如图3,连接ABOC于点G

∵直线OC恰好平分四边形OACB的面积,

∴直线OCAB的中点,即GAB的中点,

设直线OC的表达式为 ,解得a=∴直线OC表达式为,联立两直线解析式可得,解得

∴存在满足条件的点C,其坐标为().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:a+b=2,则称ab是关于1的平衡数.

(1)直接填写:3_ 是关于1的平衡数: :

1-x________是关于 1的平衡数(用含x的代数式表示);

(2),先化简a. b,再判断ab是否是关于1的平衡数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作ECOB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AFPC于点F,连接CB.

(1)求证:AC平分∠FAB;

(2)求证:BC2=CECP;

(3)当AB=4=时,求劣弧的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,有点A(20)B(03)C(02),且△AOB与△OCD全等.请直接写出点D的坐标________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B、C在数轴上表示的数分别为a、b、c,且OA+OB=OC,则下列结论中:

①abc<0;②a(b+c)>0;③a﹣c=b;④

其中正确的个数有 (  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AC=6,BD=6,EBC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是(  )

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明想知道一堵墙上点A的高度(AOOD),但又没有直接测量的工具,于是设计了下面的方案,请你先补全方案,再说明理由.

第一步:找一根长度大于OA的直杆,使直杆靠在墙上,且顶端与点A重合,记下直杆与地面的夹角∠ABO

第二步:使直杆顶端竖直缓慢下滑,直到∠   =∠   .标记此时直杆的底端点D

第三步:测量   的长度,即为点A的高度.

说明理由:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A(﹣5,0),以OA为直径在第二象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,作点A关于点B的对称点D,过点D作x轴垂线,分别交直线OB、x轴于点E、F,点F为垂足,当DF=4时,线段EF=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知RtOAB,OAB=90°,ABO=30°,斜边OB=4,将RtOAB绕点O顺时针旋转60°,如题图1,连接BC.

(1)填空:∠OBC=   °;

(2)如图1,连接AC,作OPAC,垂足为P,求OP的长度;

(3)如图2,点M,N同时从点O出发,在OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?

查看答案和解析>>

同步练习册答案