精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O中,点C 的中点,∠ACB120°OC的延长线与AD交于点D,且∠D=∠B

1)求证:AD与⊙O相切;

2)若CE4,求弦AB的长.

【答案】(1)见解析;(2)8

【解析】

1)连接OA,由,得CA=CB,根据题意可得出∠O=60°,从而得出∠OAD=90°,则AD与⊙O相切;

2)由题意得OCABRtBCE中,由三角函数得BE=4,即可得出AB的长.

1)证明:如图,连接OA

CACB

又∵∠ACB120°

∴∠B30°

∴∠O2B60°

∵∠D=∠B30°

∴∠OAD180°﹣(∠O+D)=90°

AD与⊙O相切;

2)∵∠O60°OAOC

∴△OAC是等边三角形,

∴∠ACO60°

∵∠ACB120°

∴∠ACB2ACOACBC

OCABAB2BE

CE4,∠B30°

BC2CE8

BE4

AB2BE8

∴弦AB的长为8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线轴交于点两点(点在点的右侧),与轴交于点,点是抛物线上的一个动点,过轴,垂足为,交直线于点

1)直接写出三点的坐标;

2)若以为顶点的四边形是平行四边形,求此时点的坐标;

3)当点位于直线下方的抛物线上时,过点于点,设点的横坐标为的面积为,求的函数关系式,并求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C的中点,连接AC并延长至点D,使CDAC,点EOB上一点,且CE的延长线交DB的延长线于点FAF交⊙O于点H,连接BH

1)求证:BD是⊙O的切线;(2)当OB2时,求BH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC和△EFG是两块完全重合的等边三角形纸片,(如图①所示)OAB(EF)的中点,△ABC不动,将△EFGO点顺时针转α﹝0°<α120°﹞角.

1)试分别说明α为多少度时,点F在△ABC外部、BC上、内部(不证明)?

2)当点F不在BC上时,在图②、图③两种情况下(设EF或延长线与BC交于PEGCA或延长线交于Q),分别写出OPOQ的数量关系,并将图③情况给予说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校有名学生,为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

根据以上信息,回答下列问题:

1)参与本次问卷调查的学生共有_____人,其中选择类的人数有_____人;

2)在扇形统计图中,求类对应的扇形圆心角的度数,并补全条形统计图;

3)若将这四类上学方式视为“绿色出行”,请估计该校选择“绿色出行”的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线AC,BD相交于点O,点E,FBD上,BE=DF.

(1)求证:AE=CF;

(2)若AB=6,∠COD=60°,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在圆心角为120°的扇形OAB中,半径OA2C的中点,DOA上任意一点(不与点OA重合),则图中阴影部分的面积为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为落实“绿水青山就是金山银山”的发展理念,某县政府部门决定,招标一工程队负责完成一座水库的土方施工任务.该工程队有AB两种型号的挖掘机,已知1A型和2B型挖掘机同时施工1小时共挖土80立方米,2A型和3B型挖掘机同时施工1小时共挖土140立方米.每台A型挖掘机一个小时的施工费用是350元,每台B型挖掘机一个小时的施工费用是200元.

1)分别求每台A型,B型挖掘机一小时各挖土多少立方米?

2)若A型和B型挖掘机共10台同时施工4小时,至少完成1360立方米的挖土量,且总费用不超过14000元.问施工时有哪几种调配方案?且指出哪种调配方案的施工费用最低,最低费用多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,∠ABC=90°AB=9BC=12.点Q是线段AC上的一个动点,过点QAC的垂线交射线AB于点P.当△PQB为等腰三角形时,则AP的长为_______

查看答案和解析>>

同步练习册答案