精英家教网 > 初中数学 > 题目详情

【题目】阅读下面材料:
小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.
小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.

(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)
参考小明思考问题的方法,解答下列问题:
(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;
(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k< ),∠AED=∠BCD,求 的值(用含k的式子表示).

【答案】
(1)

:如图2,

作AF⊥BC,

∵BE⊥AD,∴∠AFB=∠BEA,

在△ABF和△BAE中,

∴△ABF≌△BAE(AAS),

∴BF=AE

∵AB=AC,AF⊥BC,

∴BF= BC,

∴BC=2AE,

故答案为AAS


(2)

解:如图3,

连接AD,作CG⊥AF,

在Rt△ABC中,AB=AC,点D是BC中点,

∴AD=CD,

∵点E是DC中点,

∴DE= CD= AD,

∴tan∠DAE= =

∵AB=AC,∠BAC=90°,点D为BC中点,

∴∠ADC=90°,∠ACB=∠DAC=45°,

∴∠F+∠CDF=∠ACB=45°,

∵∠CDF=∠EAC,

∴∠F+∠EAC=45°,

∵∠DAE+∠EAC=45°,

∴∠F=∠DAE,

∴tan∠F=tan∠DAE=

∴CG= ×2=1,

∵∠ACG=90°,∠ACB=45°,

∴∠DCG=45°,

∵∠CDF=∠EAC,

∴△DCG∽△ACE,

∵CD= AC,CE= CD= AC,

∴AC=4;

∴AB=4;


(3)

解:如图4,

过点D作DG⊥BC,设DG=a,

在Rt△BGD中,∠B=30°,

∴BD=2a,BG= a,

∵AD=kDB,

∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),

过点A作AH⊥BC,

在Rt△ABH中,∠B=30°.

∴BH= a(k+1),

∵AB=AC,AH⊥BC,

∴BC=2BH=2 a(k+1),

∴CG=BC﹣BG= a(2k+1),

过D作DN⊥AC交CA延长线与N,

∵∠BAC=120°,

∴∠DAN=60°,

∴∠ADN=30°,

∴AN=ka,DN= ka,

∵∠DGC=∠AND=90°,∠AED=∠BCD,

∴△NDE∽△GDC.

∴NE=3ak(2k+1),

∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),


【解析】(1)作AF⊥BC,判断出△ABF≌△BAE(AAS),得出BF=AE,即可;(2)先求出tan∠DAE= ,再由tan∠F=tan∠DAE,求出CG,最后用△DCG∽△ACE求出AC;(3)构造含30°角的直角三角形,设出DG,在Rt△ABH,Rt△ADN,Rt△ABH中分别用a,k表示出AB=2a(k+1),BH= a(k+1),BC=2BH=2 a(k+1),CG= a(2k+1),DN= ka,最后用△NDE∽△GDC,求出AE,EC即可.此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】初二(1)班有48位学生,春游前,班长把全班学生对春游地点的意向绘制成了扇形统计图,其中想去苏州乐园的学生数的扇形圆心角600,则下列说法正确的是

A. 想去苏州乐园的学生占全班学生的60%

B. 想去苏州乐园的学生有12

C. 想去苏州乐园的学生肯定最多

D. 想去苏州乐园的学生占全班学生的1/6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】钟楼是云南大学的标志性建筑之一,某校教学兴趣小组要测量钟楼的高度,如图,他们在点A处测得钟楼最高点C的仰角为45°,再往钟楼方向前进至点B处测得最高点C的仰角为54°,AB=7m,根据这个兴趣小组测得的数据,计算钟楼的高度CD.(tan36°≈0.73,结果保留整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本题满分10分如图,已知AD是ABC的角平分线,O经过A、B、D三点,过点B作BEAD,交O于点E,连接ED.

1求证:EDAC;

2若BD=2CD,设EBD的面积为ADC的面积为,且,求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校要从八年级甲、乙两个班中各选取10名女同学组成礼仪队,选取的两个班女生的身高如下(单位:cm): 甲班:168 167 170 165 168 166 171 168 167 170
乙班:165 167 169 170 165 168 170 171 168 167
(1)补充完成下面的统计分析表:

班级

平均数

方差

中位数

甲班

168

168

乙班

168

3.8


(2)根据如表,请选择一个合适的统计量作为选择标准,说明哪一个班能被选取.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区A自来水供水路线为AB,现进行改造,沿路线AO铺设管道,并与主管道BO连接(AO⊥BO),这样路线AO最短,工程造价最低,根据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个样本中共5个数据其中前四个数据的权数分别为0.2,0.3,0.2,0.1,则余下的一个数据对应的权数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一张三角形ABC纸片,点D、E分别是△ABC边上两点. 研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是
研究(2):如果折成图2的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是
研究(3):如果折成图3的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣(x+1)2+2的顶点坐标为

查看答案和解析>>

同步练习册答案