【题目】如图,在 Rt△ABC 中,AB=AC,∠BAC=90°,直线 AE 是经过点A 的任一直线,且与直线 BC 交于点 P(异于点 B、C),BD⊥AE,垂足为 D,CE⊥AE,垂足为 E.试问:
(1)AD 与 CE 的大小关系如何?请说明理由.
(2)写出线段 DE、BD、CE 的数量关系.(直接写出结果,不需要写过程.)
【答案】(1)AD=CE,理由见解析;(2)若点P在线段BC上, DE=BD-CE;若点P在线段BC的延长线上,DE=BD+CE.
【解析】
(1)利用等腰直角三角形的性质得出,∠CAE=∠ABD,AB=AC进而得出△ABD≌△CAE得出答案即可;
(2)根据点P在线段BC上,以及点P在线段BC的延长线上,分别求出即可.
解;(1)AD=CE,
理由:∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
又∵BD⊥AE,
∴∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ABD和△CAE中,
∴△ABD≌△CAE
∴AD=CE;
(2)如图1所示:若点P在线段BC上,
∵△ABD≌△CAE,
∴BD=AE,AD=CE,
∴AE-AD=DE=BD-CE,
如图2所示:若点P在线段BC的延长线上,
∵△ABD≌△CAE,
∴BD=AE,AD=CE,
则DE=AE+AD=BD+CE.
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC中,A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),△A′B′C′是△ABC平移之后得到的图,并且C的对应点C′的坐标为(4,1)。
(1)A′、B′.两点的坐标分别为A′ 、B′ ;
(2)请作出△ABC平移之后的图形△A′B′C′;
(3)求△A′B′C′的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人分别在六次射击中的成绩如下表:(单位:环)
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | |
甲 | 6 | 7 | 7 | 8 | 6 | 8 |
乙 | 5 | 9 | 6 | 8 | 5 | 9 |
分别算出两人射击的平均数和方差.这六次射击中成绩发挥比较稳定的是谁?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 在平面直角坐标系xOy中,O为坐标原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.
(1)若四边形OABC为长方形,如图1,
①求点B的坐标;
②若BQ=BP,且点B1落在AC上,求点B1的坐标;
(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC,边OC分别交于点E,点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标(用含m的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】配餐公司为某学校提供 A、B、C 三类午餐供师生选择,三类午餐每 份的价格分别是:A 餐 6 元,B 餐 8 元,C 餐 12 元.为做好下阶段的营销工作,配餐 公司根据该校上周 A、B、C 三类午餐购买情况,将所得的数据处理后,制成统计表(如 下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).
请根据以上信息,解答下列问题:
(1)配餐公司上周在该校销售 B 餐每份的利润大约是 元;
(2)请你计算配餐公司上周在该校销售午餐约盈利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段AB,A(2,1),B(4,3),现将线段AB沿y轴方向向下平移得到线段MN,直线y=mx+b过M、N两点,且M、N两点恰好也落在双曲线y=的一条分支上,
(1)求反比例函数和一次函数的解析式.
(2)直接写出不等式mx+b-≥0的解集
(3)若点C(x1,a),D(x2,a-1)在双曲线y=上,试比较x1和x2的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨,则每吨按政府补贴优惠价a元收费;若每月用水量超过14吨,则超过部分每吨按市场调节价b元收费.小刘家3月份用水10吨,交水费20元;4月份用水16吨,交水费35元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;
(3)小刘预计他家5月份用水不会超过22吨,那么小刘家5月份最多交多少元水费?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.
(1)求证:△ABF∽△DFE;
(2)如果AB=12,BC=15,求tan∠FBE的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com