精英家教网 > 初中数学 > 题目详情

【题目】对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若ma2+b2ab为正整数),记Am)=ab.例如:2922+5229就是一个“平方和数”,则A29)=2×510

1)判断25是否是“平方和数”,若是,请计算A25)的值;若不是,请说明理由;

2)若k是一个“平方和数”,且Ak)=,求k的值.

【答案】125是“平方和数”,A(25)=12;(2k的值为1020345274

【解析】

1)把25写成两个正整数的平方和,再根据Am)=ab求出A25)便可;

2)设ka2+b2,则Ak)=ab,根据(k)=,得ab的方程,求得ab的关系式,进而由abk满足的条件求得k的值便可.

125是“平方和数”

2532+42

A(25)3×412

故答案为:25是“平方和数”,A(25)=12

2)设ka2+b2,则A(k)ab

A(k)

ab

2aba2+b24

a22ab+b24

(ab)24

ab±2,即ab+2ba+2

ab为正整数,k为两位数,

∴当a1b3a3b1时,k10

a2b4a4b2时,k20

a3b5a5b3时,k34

a4b6a6b4时,k52

a5b7a7b5时,k74

综上,k的值为:1020345274

故答案为:k的值为1020345274

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P为边AC上一点,且AP=5cm.点Q为边AB上的任意一点(不与点A,B重合),若点A关于直线PQ的对称点A'恰好落在△ABC的边上,则AQ的长为_____cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一个高脚杯截面图,杯体呈抛物线状(杯体厚度不计),点是抛物线的顶点,,点的中点,当高脚杯中装满液体时,液面,此时最大深度(液面到最低点的距离)为,将高脚杯绕点缓缓倾斜倒出部分液体,当时停止,此时液面为,则液面到平面的距离是________________;此时杯体内液体的最大深度为_____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点PBA的延长线上,PAAOPD与⊙O相切于点DBCABPD的延长线于点C,若⊙O的半径为1,则BC的长是(  )

A.1.5B.2C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB2∠ABC45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,边上一动点(不与点重合),以为边长作正方形,连接,则的面积的最大值等于________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张矩形纸板和圆形纸板按如图方式分别剪得同样大定理特例图(AC=3BC=4AB=5,分别以三边长向外剪正方形) ,图1中边HILM和点KJ都恰好在矩形纸板的边上,图2中的圆心OAB中点处,点HI都在圆上,则矩形和圆形纸板的面积比是(

A.400:127πB.484:145πC.440:137πD.88:25π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系中,点为坐标原点,抛物线轴于两点(点在点的右边)交轴于点

1)如图1,求抛物线的解析式;

2)如图2,点是第一象限抛物线上的点,连接,过点于点,求的面积;

3)如图3,在(2)的条件下,连接于点,点是第四象限抛物线上的点,连接于点,交轴于点,过点作直线轴于点,过点轴,交直线于点,点是抛物线对称轴右侧第一象限抛物线上的点,连接的延长线交于点,连接并延长交于点.求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,四边形ABCD是边长为5的菱形,顶点ACD均在坐标轴上,sinB=

1)求过ACD三点的抛物线的解析式;

2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1>y2时,自变量x的取值范围;

3)设直线AB与(1)中抛物线的另一个交点为EP点为抛物线上AE两点之间的一个动点,且直线PEx轴于点F,问:当P点在何处时,PAE的面积最大?并求出面积的最大值.

查看答案和解析>>

同步练习册答案