【题目】如图,在Rt△ABC中, 点P从点A出发,沿折线AB-BC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动.动点Q从点C出发,沿CA方向以每秒个单位长度的速度运动.P、Q两点同时出发,当点P停止时,点Q也随之停止.设点P的运动时间为t秒.
(1)用含t的代数式表示线段AQ的长.
(2)当点P在线段AB上运动时,求PQ与△ABC一边垂直时t的值.
(3)设△APQ的面积为S(S>0),求S与t的函数关系式.
(4)当△APQ是以PQ为腰的等腰三角形时,直接写出t的值.
【答案】(1)AQ=;(2)或;(3)时,;时,;(4),.
【解析】试题分析:(1)AQ=AC-CQ,计算AQ.(2) 当∠APQ=90°时, 当∠AQP=90°分类讨论,利用特殊角三角函数列式求解.(3) P在AB上,P在BC上分别求函数关系式.(4) P在AB上,P在BC上分别求等腰三角形.
试题解析:
AB=8,∠C=90°,∠A=30°,所以AC=4,所以AQ=AC-CQ=4.
∠A=30°,当∠APQ=90°时,时,,解得t=.
当∠AQP=90°,,,解得.
(3)P在AB上,时,AQ=4,AP=8t,=,
;
P在BC上,时,AQ=PC=4-2(t-1)=-2t+6,
所以,
所以;
(4)△APQ是以PQ为腰的等腰三角形时,P在AB上,AP=PQ,,,,解得t=.
当AQ=PQ, P在BC上,
PC2+CQ2=AP2,
( -2t+6)2+(2=(2,
解得t=.所以t=.
科目:初中数学 来源: 题型:
【题目】已知:如图,直线y=kx+b(k,b为常数)分别与x轴、y轴交于点A(﹣4,0),B(0,3),抛物线y=﹣x2+4x+1与y轴交于点C,点E在抛物线y=﹣x2+4x+1的对称轴上移动,点F在直线AB上移动,CE+EF的最小值是( )
A.2B.4C.2.5D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对非负实数x“四舍五入”到个位的值记为< x >,即已知n为正整数,如果n-≤x<n+,那么< x >=n.例如:< 0 >=< 0.48 >=0,< 0.64 >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…则满足方程< x >=的非负实数x的值为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(观察探索)用“<”、“>”或“=”完成以下填空,并观察两边算式,探索规律:
(猜想证明)请用一个含字母a、b的式子表示上以规律,并证明结论的正确性;
(应用拓展)比较代数式m2-3mn+1与mn-4n2的大小,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】①将下列各数填入相应的括号中:
0,-2019,7.01,+6,+30﹪,
负数:{ }
正数:{ }
整数:{ }
②.画一条数轴,在数轴上标出以下各点,然后用“<”符号连起来.
-;-(-4);-|-1|;;0;;2.5;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与两轴分别交于A、B、C三点,已知点A(一3,O),B(1,0).点P在第二象限内的抛物线上运动,作PD上轴子点D,交直线AC于点E.
(1)
(2)过点P作PF⊥AC于点F.求当△PEF的周长取最大值时点P的坐标.
(3)连接AP,并以AP为边作等腰直角△APQ,当顶点Q恰好落在抛物线的对称轴上时,求对应的P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】几年前我国曾经流行有一种叫“二十四点”的数学趣味算题,方法是给出1~13之间的自然数,从中任取四个,将这四个数(四个数都只能用一次)进行“+”“-”“×”“÷”运算,可加括号使其结果等于24.
例如:对1,2,3,4可运算(1+2+3)×4=24,也可以写成4×(1+2+3)=24,但视作相同的方法.
现有郑、付两同学的手中分别握着四张扑克牌(见下图);若红桃、方块上的点数记为负数,黑桃、梅花上的点数记为正数.
请你对郑、付两同学的扑克牌的按要求进行记数,并按前面“二十四点”运算方式对郑、付两同学的记数分别进行列式计算,使其运算结果均为24.(分别尽可能提供多种算法)
依次记为:______ 、______ 、______ 、______
依次记为:______ 、______ 、______ 、______ .
(1)帮助郑同学列式计算:______
(2)帮助付同学列式计算:______ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com