【题目】已知:如图,三角形ABC中,D是BC边上一点.
(1)过点D作AB、AC的平行线分别交AB于点E,交AC于点F;
(2)说明:∠EDF=∠A;
(3)说明:∠A+∠B+∠C=180°.
【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析.
【解析】
(1)利用直尺过点D作DE∥AC交AB于E,过点D作DF∥AB交AC于F即可;
(2)由AB∥DF,AC∥DE知∠A+∠AED=180°,∠EDF+∠AED=180°,据此可得;
(3)由AB∥DF,AC∥DE知∠B=∠FDC,∠C=∠BDE,根据∠BDE+∠EDF+∠FDC=180°及∠EDF=∠A可得.
解:(1)如图所示,DE、DF即为所求.
(2)∵AB∥DF,AC∥DE,
∴∠A+∠AED=180°,∠EDF+∠AED=180°,
∴∠A=∠EDF;
(3)∵AB∥DF,AC∥DE,
∴∠B=∠FDC,∠C=∠BDE,
由(2)知∠A=∠EDF,
∵∠BDE+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°.
科目:初中数学 来源: 题型:
【题目】(1)完成下面的证明.
如图,在四边形中,,是的平分线.求证:.
证明:是的平分线(已知)
__________________(角平分线的定义)
又(已知)
__________________(等量代换)
(____________________________)
(2)已知线段,是的中点,在直线上,且,画图并计算的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.
(1)求A,B,C三点的坐标;
(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求点P的坐标;
(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形的对角线,相交于点,将沿所在直线折叠,得到.
(1)求证:四边形是菱形;
(2)若,当四边形是正方形时,等于多少?
(3)若,,是边上的动点,是边上的动点,那么的最小值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点E、F在直线AB上,点M在射线CE上,点G在线段CD上,ED与FG交于点H,∠C=∠3,∠1=∠2.
(1)试判断∠AED与∠D之间的数量关系,并说明理由;
(2)若∠EHF=80°,∠D=30°,求∠AEM的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:sin(﹣x)=﹣sinx, cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny,则下列各式不成立的是( )
A. cos(﹣45°)= B. sin75°=
C. sin2x=2sinxcosx D. sin(x﹣y)=sinxcosy﹣cosxsiny
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,问:乙校开学时的人数与原有的人数相差多少?( )
A.6B.9C.12D.18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E
(1)若AC=OD,求a、b的值;
(2)若BC∥AE,求BC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com