精英家教网 > 初中数学 > 题目详情

【题目】下列计算正确的是(
A.2a﹣a=2
B.m6÷m2=m3
C.x2010+x2010=2x2010
D.t2﹣t3=t6

【答案】C
【解析】解:A、合并同类项系数相加字母及指数不变,故A错误;
B、同底数幂的除法底数不变指数相减,故B错误
C、合并同类项系数相加字母及指数不变,故C正确;
D、合并同类项系数相加字母及指数不变,故D错误;
故选:C.
【考点精析】关于本题考查的同底数幂的除法,需要了解同底数幂的除法法则:am÷an=am-n(a≠0,m,n都是正整数,且m>n)才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)

(1)求抛物线的解析式;

(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.

(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.

(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;

②求抛物线L的解析式;

(2)求△OAE与△OCE面积之和的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).

(1)△A1B1C1是△ABC绕点 逆时针旋转 度得到的,B1的坐标是

(2)求出线段AC旋转过程中所扫过的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.

(1)求证:△BCG≌△DCE;
(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请判断下列问题中,哪些是反比例函数,并说明你的依据.
(1)三角形的底边一定时,它的面积和这个底边上的高;
(2)梯形的面积一定时,它的中位线与高;
(3)当矩形的周长一定时,该矩形的长与宽.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级(1)班10名同学在某次“1分钟仰卧起坐”的测试中,成绩如下(单位:次):39,45,40,44,37,39,46,40,41,39,那么这组数据的众数、中位数分别是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②;③ac﹣b+1=0;④OAOB=

其中正确结论的个数是(

A.4 B.3 C.2 D.1

查看答案和解析>>

同步练习册答案