【题目】如图,射线AM上有一点B,AB=6,点C是射线AM上异于B的一点,过C作CD⊥AM,且CD= AC,过D点作DE⊥AD,交射线AM于E,在射线CD取点F,使得CF=CB,连接AF并延长,交DE于点G,设AC=3x.
(1)当C在B点右侧时,求AD.DF的长.(用关于x的代数式表示)
(2)当x为何值时,△AFD是等腰三角形;
(3)作点D关于AG的对称点D′,连接FD′,GD′,若四边形DFD′G是平行四边形,求x的值.(直接写出答案)
【答案】
(1)
解:∵CD= ,AC=3x,
∴CD=4x,
∵CD⊥AM,
∴∠ACD=90°,
由勾股定理得:AD=5x,
∵AB=6,C在B点右侧,
∴BC=AC﹣AB=3x﹣6,
∵BC=FC=3x﹣6,
∴DF=CD﹣FC=4x﹣(3x﹣6)=x+6
(2)
解:分两种情况:
①当C在B点的右侧时,
∴AC>AB,
∴F必在线段CD上,
∵∠ACD=90°,
∴∠AFD是钝角,若△ADF为等腰三角形,只可能AF=DF,过F作FN⊥AD于N,如图2,
∴AN=ND=2.5x,
cos∠ADC= = ,
,
x= ;
②当C在线段AB上时,同理可知若△ADF为等腰三角形,只可能AF=DF,
i)当CF<CD时,过F作FN⊥AD于N,如图3,
∵AB=6,AC=3x,
∴BC=CF=6﹣3x,
∴DF=4x﹣(6﹣3x)=7x﹣6,
cos∠ADC= ,
∴ ,
x= ,
ii)当CF>CD时,如图4,
BC=CF=6﹣3x,
∴FD=AD=6﹣3x﹣4x=6﹣7x,
则6﹣7x=5x,
x= ,
综上所述,当x= 或 或 时,△AFD是等腰三角形
(3)
解:∵四边形DFD′G是平行四边形,且DF=D′F,
∴DFD′G是菱形,
∴DF=DG,
∴∠DFG=∠DGF,
∵∠AFC=∠DFG,
∴∠DGF=∠AFC,
∵∠ACD=∠ADG=90°,
∴∠FAC=∠DAG,
即AF平分∠DAC,
过F作FN⊥AD于N,
当C在AB的延长线上时,如图2,
FN=FC=3x﹣6,DF=x+6,
sin∠CDA= ,
解得:x=4,
当C在AB边上时,如图5,
FN=FC=6﹣3x,
DF=7x﹣6,
sin∠CDA= = ,
x= ,
综上所述,若四边形DFD′G是平行四边形,x的值是4或
【解析】(1)由已知条件可得:CD=4x,根据勾股定理得:AD=5x,由AB=6且C在B点右侧,可以依次表示BC、CF、DF的长;(2)分两种情况:①当C在B点的右侧时,AF=DF,②当C在线段AB上时,又分两种情况:i)当CF<CD时,如图3,ii)当CF>CD时,如图4,由AF=DF,作等腰三角形的高线FN,由等腰三角形三线合一得:AN=ND=2.5x,利用同角的三角函数列比例式可求得x的值;(3)先根据四边形DFD′G是平行四边形证明它为菱形,由角的关系得:AF平分∠DAC,作辅助线,由角平分线的性质得:FN=FC,根据第2问分两种情况进行计算,根据同角的三角函数列式可求得x的值.
科目:初中数学 来源: 题型:
【题目】在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.
(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);
(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多? A、B两种型号车的进货和销售价格如表:
A型车 | B型车 | |
进货价格(元/辆) | 1100 | 1400 |
销售价格(元/辆) | 今年的销售价格 | 2400 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=﹣x+1与反比例函数 ,x与y的对应值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 1 | 2 | 3 |
y=﹣x+1 | 4 | 3 | 2 | 0 | ﹣1 | ﹣2 |
1 | 2 | ﹣2 | ﹣1 | ﹣ |
不等式﹣x+1>﹣ 的解为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形,建立如图所示的平面直角坐标系,点C的坐标为(0,﹣1).
(1)在如图的方格纸中把△ABC以点O为位似中心扩大,使放大前后的位似比为1:2,画出△A1B2C2(△ABC与△A1B2C2在位似中心O点的两侧,A,B,C的对应点分别是A1 , B2 , C2).
(2)利用方格纸标出△A1B2C2外接圆的圆心P,P点坐标是 , ⊙P的半径= . (保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把大小完全相同的6个乒乓球分成两组,每组3个,每组乒乓球上面分别标有数字1,2,3,将这两组乒乓球分别放入两个盒子中搅匀,再从每个盒子中各随机取出1个乒乓球,请用画树状图(或列表)的方法,求取出的2个乒乓球上面数字之和为偶数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( )
A.120°
B.180°
C.240°
D.300°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c的顶点为A,经过点B(0,3)和点(2,3),与x轴交于C,D两点,(点C在点D的左侧),且OD=OB.
(1)求这条抛物线的表达式;
(2)连接AB,BD,DA,试判断△ABD的形状;
(3)点P是BD上方抛物线上的动点,当P运动到什么位置时,△BPD的面积最大?求出此时点P的坐标及△BPD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com