精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=ax2+bx+c的顶点为A,经过点B(0,3)和点(2,3),与x轴交于C,D两点,(点C在点D的左侧),且OD=OB.

(1)求这条抛物线的表达式;
(2)连接AB,BD,DA,试判断△ABD的形状;
(3)点P是BD上方抛物线上的动点,当P运动到什么位置时,△BPD的面积最大?求出此时点P的坐标及△BPD的面积.

【答案】
(1)

解:∵B(0,3)和点(2,3)的纵坐标相同,

∴抛物线的对称轴为x=1,OB=3.

∵OD=OB,

∴OD=3.

∵抛物线与x轴交于C,D两点,(点C在点D的左侧),

∴D(3,0).

将点B(0,3)、(2,3)、(3,0)代入抛物线的解析式得:

解得:a=﹣1,b=2,c=3.

∴抛物线的解析式为y=﹣x2+2x+3


(2)

解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴点A的坐标为(1,4).

依据两点间的距离公式可知:AB2=(1﹣0)2+(4﹣3)2=2,AD2=(3﹣1)2+(4﹣0)2=20,BD2=(3﹣0)2+(0﹣3)2=18,

∴AB2+BD2=AD2

∴△ABD为直角三角形


(3)

解:如图所示:连结OP.

设点P的坐标为(x,﹣x2+2x+3).

△DBP的面积=△OBP的面积+△ODP的面积﹣△BOD的面积

= ×3×x+ ×3×(﹣x2+2x+3)﹣ ×3×3

=﹣ x2+ x

=﹣ (x﹣ 2+

∴当x= 时,△DBP的面积最大,最大值为

将x= 代入抛物线的解析式得y=

∴点P的坐标为(


【解析】(1)由点B的坐标可知OB=3,OD=3,故此可得到点D的坐标,然后利用待定系数法求解即可;(2)先由抛物线的解析式求得点A的坐标,然后利用两点间的距离公式可求得AB、AD、BD的长,最后利用勾股定理的逆定理进行判断即可(3)如图所示:连结OP.设点P的坐标为(x,﹣x2+2x+3).依据△DBP的面积=△OBP的面积+△ODP的面积﹣△BOD的面积,列出△DBP的面积与x的函数关系式,然后依据二次函数的性质求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)计算: + +(﹣1)0﹣2sin45°
(2)求满足 的x、y的正整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线AM上有一点B,AB=6,点C是射线AM上异于B的一点,过C作CD⊥AM,且CD= AC,过D点作DE⊥AD,交射线AM于E,在射线CD取点F,使得CF=CB,连接AF并延长,交DE于点G,设AC=3x.

(1)当C在B点右侧时,求AD.DF的长.(用关于x的代数式表示)
(2)当x为何值时,△AFD是等腰三角形;
(3)作点D关于AG的对称点D′,连接FD′,GD′,若四边形DFD′G是平行四边形,求x的值.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼时间不少于1小时,为了解学生参加体育锻炼的情况,抽样调查了900名学生每天参加体育锻炼的时间,并将调查结果制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)求参加体育锻炼时间为1小时的人数.
(2)求参加体育锻炼时间为1.5小时的人数.
(3)补全频数分布直方图.
(4)这次调查参加体育锻炼时间的中位数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,E是AC上一点,且AE=AB,∠EBC= ∠BAC,以AB为直径的⊙O交AC于点D,交EB于点F.
(1)求证:BC与⊙O相切;
(2)若AB=8,sin∠EBC= ,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放加搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工程,乙工程队单独先做10天后,再由甲,乙两个工程队合作20天就能完成全部工程,已知甲工程队单独完成此工程所需天数是乙工程队单独完成此工程所需天数的
(1)求:甲,乙工程队单独做完成此工程各需多少天?
(2)甲工程队每天的费用为0.67万元,乙工程队每天的费用为0.33万元,该工程的预算费用为20万元,若甲,乙工程队一起合作完成该工程,请问工程费用是否够用,若不够用应追加多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=mx+n(m≠0)的图象,当y2>y1 , x的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,链接BM

(1)菱形ABCO的边长
(2)求直线AC的解析式;
(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
①当0<t< 时,求S与t之间的函数关系式;
②在点P运动过程中,当S=3,请直接写出t的值.

查看答案和解析>>

同步练习册答案