如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.
![]()
(1)OCED是菱形.(2)24.
【解析】
试题分析:(1)首先可根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.
(2)连接OE,通过证四边形BOEC是平行四边形,得OE=BC;根据菱形的面积是对角线乘积的一半,可求得四边形ODEC的面积.
试题解析::(1)四边形OCED是菱形.
∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
又在矩形ABCD中,OC=OD,
∴四边形OCED是菱形.
(2)连接OE.由菱形OCED得:CD⊥OE,
![]()
又∵BC⊥CD,
∴OE∥BC
又∵CE∥BD,
∴四边形BCEO是平行四边形;
∴OE=BC=8
∴S四边形OCED=
OE•CD=
×8×6=24.
考点:1.菱形的判定;2.平行四边形的判定;3.矩形的性质.
科目:初中数学 来源:2013-2014学年山东省济南市长清区九年级复习调查考试(一模)数学试卷(解析版) 题型:选择题
已知一次函数
,
从
中随机取一个值,
从
中随机取一个值,则该一次函数的图象经过二、三、四象限的概率为
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年山东省九年级第一次学业水平模拟考试数学试卷(解析版) 题型:解答题
如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D。
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由。
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年山东省九年级第一次学业水平模拟考试数学试卷(解析版) 题型:选择题
如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为( )
(A)2
(B)8 (C)2
(D)2![]()
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年山东省九年级第一次学业水平模拟考试数学试卷(解析版) 题型:选择题
在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是( )
(A)1.71 (B)1.85 (C)1.90 (D)2.31
查看答案和解析>>
科目:初中数学 来源:2013-2014学年山东省泰安市九年级学业模拟考试数学试卷(解析版) 题型:填空题
如图,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=
,则下底BC的长为 __________.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年山东省泰安市九年级学业模拟考试数学试卷(解析版) 题型:选择题
已知∠I=40°,则∠I的余角度数是
A.150° B.140° C.50° D.60°
查看答案和解析>>
科目:初中数学 来源:2013-2014学年山东省德州市九年级第一次模拟考试数学试卷(解析版) 题型:解答题
如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.
(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.
(2)引申:如果∠C
90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;
(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____度时,图中阴影部分的面积和有最大值是________.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年山东省德州市中考一模数学试卷(解析版) 题型:选择题
若反比例函数
的图象上有两点P1(2,y1)和P2(3,y2),那么( )
A.y1<y2<0 B.y1>y2>0 C.y2<y1<0 D.y2>y1>0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com