精英家教网 > 初中数学 > 题目详情

【题目】如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6 ,∠BAD=60°,且AB>6

(1)求∠EPF的大小;
(2)若AP=10,求AE+AF的值;
(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.

【答案】
(1)

解:过点P作PG⊥EF于点G,如图1所示.

∵PE=PF=6,EF=6

∴FG=EG=3 ,∠FPG=∠EPG= ∠EPF.

在Rt△FPG中,sin∠FPG= = =

∴∠FPG=60°,

∴∠EPF=120°.


(2)

解:过点P作PM⊥AB于点M,作PN⊥AD于点N,如图2所示.

∵AC为菱形ABCD的对角线,

∴∠DAC=∠BAC,AM=AN,PM=PN.

在Rt△PME和Rt△PNF中,PM=PN,PE=PF,

∴Rt△PME≌Rt△PNF,

∴ME=NF.

又AP=10,∠PAM= ∠DAB=30°,

∴AM=AN=APcos30°=10× =5

∴AE+AF=(AM+ME)+(AN﹣NF)=AM+AN=10


(3)

解:如图,

当△EFP的三个顶点分别在AB,AD,AC上运动,点P在P1,P之间运动,

∴P1O=PO=3,AO=9,

∴AP的最大值为12,AP的最小值为6


【解析】(1)根据锐角三角函数求出∠FPG,最后求出∠EPF.(2)先判断出Rt△PME≌Rt△PNF,再根据锐角三角函数求解即可,(3)根据运动情况及菱形的性质判断求出AP最大和最小值.此题是菱形的性质题,主要考查了菱形的性质,锐角三角函数,特殊角的三角函数,解本题的关键是作出辅助线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知整数a1 , a2 , a3 , a4 , …满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2012的值为( )
A.﹣1005
B.﹣1006
C.﹣1007
D.﹣2012

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是(  )

A.75°36′
B.75°12′
C.74°36′
D.74°12′

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:
①AC=AD;②BD⊥AC;③四边形ACED是菱形.
其中正确的个数是(  )

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.

(1)求证:△ABC是等边三角形;
(2)若∠PAC=90°,AB=2 ,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,直线y=﹣ x与反比例函数y= 的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.

(1)求反比例函数的表达式;
(2)将直线y=﹣ x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.

查看答案和解析>>

同步练习册答案