精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是(  )

A.75°36′
B.75°12′
C.74°36′
D.74°12′

【答案】B
【解析】解:过点D作DF⊥AO交OB于点F,

∵入射角等于反射角,
∴∠1=∠3,
∵CD∥OB,
∴∠1=∠2(两直线平行,内错角相等);
∴∠2=∠3(等量代换);
在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,
∴∠2=90°﹣37°36′=52°24′;
∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.
故选B.
【考点精析】通过灵活运用平行线的性质,掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图1).

(1)求证:AM=AN;
(2)设BP=x.
①若BM= ,求x的值;
②求四边形ADPE与△ABC重叠部分的面积S与x之间的函数关系式以及S的最小值;
③连接DE分别与边AB、AC交于点G、H(如图2).当x为何值时,∠BAD=15°?此时,以DG、GH、HE这三条线段为边构成的三角形是什么特殊三角形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣ x+1与y轴交于点D.

(1)求抛物线的解析式;
(2)证明:△DBO∽△EBC;
(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中不正确的是(  )
A.函数y=2x的图象经过原点
B.函数y= 的图象位于第一、三象限
C.函数y=3x﹣1的图象不经过第二象限
D.函数y=﹣ 的值随x的值的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,已知AD>AB.

(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)
(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据: =1.41, =1.73).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6 ,∠BAD=60°,且AB>6

(1)求∠EPF的大小;
(2)若AP=10,求AE+AF的值;
(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是(  )

A.27
B.51
C.69
D.72

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:

AQI指数

质量等级

天数(天)

0﹣50

m

51﹣100

44

101﹣150

轻度污染

n

151﹣200

中度污染

4

201﹣300

重度污染

2

300以上

严重污染

2


(1)统计表中m= , n= . 扇形统计图中,空气质量等级为“良”的天数占%;
(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?
(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.

查看答案和解析>>

同步练习册答案