【题目】在平面直角坐标系中,直线:分别与x轴、y轴交于点A、点B,且与直线:于点C.
Ⅰ如图,求出B、C两点的坐标;
Ⅱ若D是线段OC上的点,且的面积为4,求直线BD的函数解析式.
Ⅲ如图,在Ⅱ的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
【答案】(Ⅰ)B(0,4);(Ⅱ) ;(Ⅲ) Q的坐标为(2√2,-2√2)或(-2,2)或(4,4).
【解析】
(1) 令,得到,可求B坐标,解方程组可得得解得C的坐标;(2)由面积求出D的坐标,再由待定系数法求BD函数解析式;(3)当OB为菱形的边时,,可得,当为菱形的对角线时,四边形是正方形,此时.当OB为菱形的边时,点与D重合,P、Q关于y轴对称,.
解:Ⅰ对于直线:,令,得到,
,
由,解得,
Ⅱ点D在直线上,设,
的面积为4,
,
解得,
.
设直线BD的解析式为,则有,
解得,
直线BD的解析式为.
Ⅲ如图中,
当OB为菱形的边时,,可得,
当为菱形的对角线时,四边形是正方形,此时.
当OB为菱形的边时,点与D重合,P、Q关于y轴对称,,
综上所述,满足条件的Q的坐标为或或.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l1:y=﹣x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.
(1)如图①,求出B、C两点的坐标;
(2)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.
(3)如图②,在(2)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解”雾霾天气的主要原因“,随机调查了该市部分市民,并对调查结果进行整理.绘制了如下尚不完整的统计图表.
组别 | 观点 | 频数(人数) |
A | 大气气压低,空气不流动 | 80 |
B | 地面灰尘大,空气湿度低 | m |
C | 汽车尾气排放 | n |
D | 工厂造成的污染 | 120 |
E | 其他 | 60 |
请根据图表中提供的信息解答下列问题:
(1)填空:m= , n= . 扇形统计图中E组所占的百分比为%;
(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与直线y= x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3, ).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.
(1)求抛物线的解析式;
(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.
(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点A在数轴上对应的数为a,点B对应的数为b,且a,b满足:|a+3|+(b-2)2=0
(1)求线段AB的长;
(2)如图①,点C在数轴上对应的数为x,且是方程的根,在数轴上是否存在点M使MA+MB=BC+AB?若存在,求出点M对应的数;若不存在,说明理由;
(3)如图②,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,当N在B的右侧运动时,请直接判断的值是不变的还是变的,如果不变请直接写出其值,如果是变的请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC中,BD平分∠ABC,CE平分∠ACB的邻补角∠ACM,若∠BDC=130°,∠E=50°,则∠BAC的度数是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,则∠1+∠2的度数为( )
A. 80°; B. 90°; C. 100°; D. 110°;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)请你数一数,图中有多少个小于平角的角;
(2)求出∠BOD的度数;
(3)请通过计算说明OE是否平分∠BOC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOC为直角,OC是∠BOD的平分线,且∠AOB=57.65°,则∠AOD的度数是( )
A. 122°20′ B. 122°21′ C. 122°22′ D. 122°23′
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com