ÒÑÖª¶þ´Îº¯Êýy=x2-£¨2m+1£©x+m2µÄͼÏóÓëxÖá½»ÓÚµãA£¨xl£¬0£©¡¢B£¨x2£¬0£©£¬ÆäÖÐxl£¼x2£¬ÇÒÊýѧ¹«Ê½+Êýѧ¹«Ê½=Êýѧ¹«Ê½£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÈôÒ»´Îº¯Êýy=x+nµÄͼÏó¹ýµãB£¬ÇóÆä½âÎöʽ£»
£¨3£©ÔÚ¸ø³öµÄ×ø±êϵÖл­³öËùÇó³öµÄÒ»´Îº¯ÊýºÍ¶þ´Îº¯ÊýµÄͼÏó£»
£¨4£©¶ÔÈÎÒâʵÊýa¡¢b£¬Èôa¡Ýb£¬¼Çmax{a£¬b}=a£¬ÀýÈ磺max{1£¬2}=2£¬max{3£¬3}=3£¬ÇëÄã¹Û²ìµÚ£¨3£©ÌâÖеÄÁ½¸öͼÏó£¬Èç¹û¶ÔÓÚÈÎÒâÒ»¸öʵÊýx£¬Ëü¶ÔÓ¦µÄÒ»´Îº¯ÊýµÄֵΪy1£¬¶ÔÓ¦µÄ¶þ´Îº¯ÊýµÄֵΪy2£¬Çó³ömax{y1£¬y2}ÖеÄ×îСֵ¼°È¡µÃ×îСֵʱxµÄÖµ£®

½â£º£¨1£©Áîy=0£¬µÃx2-£¨2m+1£©x+m2=0£»
ÒòΪÅ×ÎïÏßÓëxÖá½»ÓÚ²»Í¬Á½µã£¬
ËùÒÔ¡÷=[-£¨2m+1£©]2-4m2£¾0£¬
½âµÃm£¾-£»
ÓÖÒòΪx1+x2=2m+1£¬x1x2=m2£¬
ËùÒÔ+==£¬
¼´=£¬
½âµÃm=2£¬»òm=£¨Òòm£¾£¬¹ÊÉáÈ¥£©£»
ËùÒÔ¶þ´Îº¯ÊýµÄ½âÎöʽΪy=x2-5x+4£»

£¨2£©¶þ´Îº¯Êýy=x2-5x+4ÖУ¬Áîy=0£¬µÃx1=1£¬x2=4£¬
ËùÒÔB£¨4£¬0£©£»
ÒòΪһ´Îº¯Êýy=x+nµÄͼÏó¹ýµãB£¨4£¬0£©£¬
ËùÒÔ0=4+n£¬
½âµÃn=-4£»
¡àÒ»´Îº¯Êý½âÎöʽΪy=x-4£»

£¨3£©Èçͼ£»

£¨4£©½â·½³Ì×飬µÃÒ»´Îº¯ÊýÓë¶þ´Îº¯ÊýͼÏóµÄÁíÒ»½»µãΪC£¨2£¬-2£©£»
¹Ê¶ÔÈÎÒâÒ»¸öʵÊýx£¬ËùÇómax{y1£¬y2}ÖеÄ×îСֵΪ-2£¬´Ëʱx=2£®
·ÖÎö£º£¨1£©ÓÉÓÚA¡¢BÊÇÅ×ÎïÏßÓëxÖáµÄ½»µã£¬¸ù¾ÝΤ´ï¶¨Àí¼´¿ÉµÃµ½x1+x2¼°x1x2µÄÖµ£¬½«ÒÑÖªµÄ´úÊýʽ»¯Îªx1+x2¡¢x1x2µÄÐÎʽ£¬È»ºó´úÖµ¼ÆËã¼´¿ÉÇóµÃmµÄÖµ£¬ÓÉ´Ë¿ÉÈ·¶¨Å×ÎïÏߵĽâÎöʽ£»
£¨2£©¸ù¾ÝÅ×ÎïÏߵĽâÎöʽ£¬¿ÉÇó³öA¡¢BµÄ×ø±ê£¬½«Bµã×ø±ê´úÈëËùÇóÖ±ÏߵĽâÎöʽÖм´¿ÉÇóµÃnµÄÖµ£¬ÓÉ´Ë¿ÉÈ·¶¨¸ÃÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨4£©ÓÉÓÚmax{a£¬b}=aÖУ¬×ÜÊÇÈ¡a¡¢bÖнϴóµÄÖµ×÷Ϊmax{a£¬b}µÄÖµ£¬ÄÇôµ±max{y1£¬y2}È¡×îСֵʱ£¬y1¡¢y2¶ÔÓ¦µÄÊÇÖ±ÏßÓëÅ×ÎïÏßÁíÒ»¸ö½»µãµÄ×Ý×ø±ê£¬¿ÉÁªÁ¢Á½¸öº¯ÊýµÄ½âÎöʽ£¬¼´¿ÉÇóµÃÕâ¸ö½»µãµÄ×ø±ê£¬ÄÇô½»µãµÄ×Ý×ø±ê¼´Îªmax{y1£¬y2}µÄ×îСֵ£¬½»µãµÄºá×ø±ê¼´Îª´ËʱxµÄÖµ£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˸ùÓëϵÊýµÄ¹ØÏµ£¬Ò»´Îº¯Êý¡¢¶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨ÒÔ¼°º¯ÊýͼÏó½»µã×ø±êµÄÇ󷨣»ÔÚ£¨4£©ÌâÖУ¬Ö»ÓÐÀí½âÁËmax{a£¬b}µÄȡֵ·½·¨²ÅÄÜÕýÈ·µÄÇó³ö´ð°¸£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

22¡¢ÒÑÖª¶þ´Îº¯Êýy=x2+mx+m-5£¬
£¨1£©ÇóÖ¤£º²»ÂÛmÈ¡ºÎֵʱ£¬Å×ÎïÏß×ÜÓëxÖáÓÐÁ½¸ö½»µã£»
£¨2£©Çóµ±mÈ¡ºÎֵʱ£¬Å×ÎïÏßÓëxÖáÁ½½»µãÖ®¼äµÄ¾àÀë×î¶Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýy=x2+£¨2a+1£©x+a2-1µÄ×îСֵΪ0£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
A¡¢
3
4
B¡¢-
3
4
C¡¢
5
4
D¡¢-
5
4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖª¶þ´Îº¯Êýy=-x2+2x+mµÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôò¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì-x2+2x+m=0µÄ½âΪ£¨¡¡¡¡£©
A¡¢x1=1£¬x2=3B¡¢x1=0£¬x2=3C¡¢x1=-1£¬x2=1D¡¢x1=-1£¬x2=3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

8¡¢ÒÑÖª¶þ´Îº¯Êýy1=x2-x-2ºÍÒ»´Îº¯Êýy2=x+1µÄÁ½¸ö½»µã·Ö±ðΪA£¨-1£¬0£©£¬B£¨3£¬4£©£¬µ±y1£¾y2ʱ£¬×Ô±äÁ¿xµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýy=-x2+bx+cµÄͼÏóÈçͼËùʾ£¬ËüÓëxÖáµÄÒ»¸ö½»µã×ø±êΪ£¨-1£¬0£©£¬ÓëyÖáµÄ½»µã×ø±êΪ£¨0£¬3£©£®
£¨1£©ÊÔÇó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÇóyµÄ×î´óÖµ£»
£¨3£©Ð´³öµ±y£¾0ʱ£¬xµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸