【题目】某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是( ).
①从开始观察时起,50天后该植物停止长高;
②直线AC的函数表达式为;
③第40天,该植物的高度为14厘米;
④该植物最高为15厘米.
A.①②③B.②④C.②③D.①②③④
【答案】A
【解析】
①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;
②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,
③把x=40代入②的结论进行计算即可得解;
④把x=50代入②的结论进行计算即可得解.
解:∵CD∥x轴,
∴从第50天开始植物的高度不变,
故①的说法正确;
设直线AC的解析式为y=kx+b(k≠0),
∵经过点A(0,6),B(30,12),
∴,
解得:,
∴直线AC的解析式为(0≤x≤50),
故②的结论正确;
当x=40时,,
即第40天,该植物的高度为14厘米;
故③的说法正确;
当x=50时,,
即第50天,该植物的高度为16厘米;
故④的说法错误.
综上所述,正确的是①②③.
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.
(1)求k和n的值;
(2)求△AOB的面积;
(3)直接写出y1> y2时自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬和传承红色文化,某校欲在暑假期间组织学生到A、B、C、D四个基地开展研学活动,每个学生可从A、B、C、D四个基地中选择一处报名参加.小莹调查了自己所在班级的研学报名情况,绘制成如图所示的两幅不完整的统计图,其中扇形统计图中A、D两部分的圆心角度数之比为3:2.请根据图中信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)求去往A地和D地的人数,并补全条形统计图;
(3)小莹和小亮分别从四个基地中随机选一处前往,用树状图或列表法求两人前往不同基地的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线交轴于点,交轴正半轴于点,与过点的直线相交于另一点,过点作轴,垂足为.
(1)求抛物线的表达式;
(2)点在线段上(不与点,重合),过作轴,交直线于,交抛物线于点,于点,求的最大值;
(3)若是轴正半轴上的一动点,设的长为.是否存在,使以点为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,将一张矩形纸片 ABCD 沿着对角线 BD 向上折叠,顶点 C 落到点 E 处,BE 交 AD 于点 F.
(1)求证:△BDF 是等腰三角形;
(2)如图 2,过点 D 作 DG∥BE,交 BC 于点 G,连接 FG 交 BD 于点 O.
①判断四边形 BFDG 的形状,并说明理由;
②若 AB=6,AD=8,则 FG 的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,曲线AB是抛物线的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线的一部分.曲线AB与BC组成图形W由点C开始不断重复图形W形成一组“波浪线”.若点,在该“波浪线”上,则m的值为________,n的最大值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,则tan∠BAO的值为 ____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列数据:
请回答:
(1)第1行所有数字之和为_________(用含字母n的式子表示) ;
(2)表格中所有数字之和为______________(用含字母n的式子表示) ;
(3)根据以上的信息,计算=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=2x2+4x+k﹣1(k为大于2的正整数)与x轴有交点.
(1)求k的值及抛物线y=2x2+4x+k﹣1的对称轴;
(2)将抛物线y=2x2+4x+k﹣1在直线y=2上方的部分沿直线y=2翻折,其余部分不变,得到一个新图象,当直线y=x+b与此图象有两个公共点时,求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com