【题目】如图,曲线AB是抛物线的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线的一部分.曲线AB与BC组成图形W由点C开始不断重复图形W形成一组“波浪线”.若点,在该“波浪线”上,则m的值为________,n的最大值为________.
【答案】1 5
【解析】
由二次函数解析式可得点A坐标,由图象可知A、C之间的距离为5,即可判断点P与点A的纵坐标相同,由反比例函数图象可知在每个区间y随x的增大而减小,可得该“波浪线”上y的最大值为二次函数的最大值,把二次函数解析式配方成顶点式,可得函数最大值,即可得n的最大值.
∵抛物线解析式为,
∴x=0时,y=1,
∴点A坐标为(0,1)
由图象可知A、C之间的距离为5,
∴2020÷5=404,
∴点P与点A的纵坐标相同,
∴m=1,
由反比例函数图象可知,在每个区间y随x的增大而减小,
∴该“波浪线”上y的最大值为二次函数的最大值,
∵=-4(x-1)2+5,
∴该二次函数的最大值为5,
∴n的最大值为5.
故答案为:1,5
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的顶点,分别在轴、轴上,对角线轴,反比例函数的图象经过矩形对角线的交点,若点,,则的值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是( )
A. 甲乙两地相距1200千米
B. 快车的速度是80千米∕小时
C. 慢车的速度是60千米∕小时
D. 快车到达甲地时,慢车距离乙地100千米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】十八大以来,某校已举办五届校园艺术节.为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.
(1)五届艺术节共有________个班级表演这些节日,班数的中位数为________,在扇形统计图中,第四届班级数的扇形圆心角的度数为________;
(2)补全折线统计图;
(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用,,,表示).利用树状图或表格求出该班选择和两项的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是( ).
①从开始观察时起,50天后该植物停止长高;
②直线AC的函数表达式为;
③第40天,该植物的高度为14厘米;
④该植物最高为15厘米.
A.①②③B.②④C.②③D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠A=30°,BD为△ABC的角平分线,若AC= 12 ,则在△ABD中AB边上的高为( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx-5的经过点(-2,-15)、点(2,1).
(1)求抛物线的表达式;
(2)请用配方法求抛物线顶点A的坐标;
(3)已知点M坐标为(2,—1).设动点P、Q分别在抛物线和对称轴上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P、Q两点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组
请结合题意填空,完成本题的解答.
(1)解不等式①,得________;
(2)解不等式②,得________;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)在平面直角坐标系中A(5,0),B为y轴上任意一点,以点B为直角顶点作等腰Rt△ABC(点A、B、C按顺时针方向排列),请探究点C是否在一确定的直线上;
(2)在平面直角坐标系中,A(﹣1,0),B(4,2m),连接AB,将AB绕点B逆时针旋转90°到CB,请探究点C是否在一确定的直线上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com